Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{1}{2016}\)
\(=2016+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{1}{2016}\)
\(=1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{1}{2016}\right)\)
\(=\dfrac{2017}{2}+\dfrac{2017}{3}+\dfrac{2017}{4}+...+\dfrac{2017}{2016}+\dfrac{2017}{2017}\)
\(=2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)
Do đó: \(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}\right)}=\dfrac{1}{2017}\)
Vậy...
\(B=\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)
\(B=2016+\dfrac{2015}{2}+\dfrac{2014}{3}+....+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)
\(B=1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{3}{2014}+1\right)+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)\)
\(B=\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+....+\dfrac{2017}{2014}+\dfrac{2017}{2015}+\dfrac{2017}{2016}\)
\(B=2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)
\(\dfrac{B}{A}=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}=2017\)
\(\dfrac{B}{A}=\dfrac{\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{\dfrac{2017}{2017}+\left(\dfrac{2015}{2}+\dfrac{2}{2}\right)+\left(\dfrac{2014}{3}+\dfrac{3}{3}\right)+...+\left(\dfrac{1}{2016}+\dfrac{2016}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=2017\)
Vậy \(\dfrac{B}{A}=2017\)
\(\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{2}{2016}+\dfrac{1}{2017}\)
\(=\left(\dfrac{2016}{2}+1\right)+\left(\dfrac{2015}{3}+1\right)+...+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{1}{2017}+1\right)+1\)
\(=\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\dfrac{2018}{2018}\)
\(=2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)\)
Theo đề, ta có: \(x=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}}=2018\)
\(P=\frac{3^{2016}-6^{2016}+9^{2016}-12^{2016}+15^{2016}-18^{2016}}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=\frac{\left(1.3\right)^{2016}-\left(2.3\right)^{2016}+\left(3.3\right)^{2016}-\left(4.3\right)^{2016}+\left(5.3\right)^{2016}-\left(6.3\right)^{2016}}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=\frac{1^{2016}.3^{2016}-2^{2016}.3^{2016}+3^{2016}.3^{2016}-4^{2016}.3^{2016}+5^{2016}.3^{2016}-6^{2016}.3^{2016}}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=\frac{-3^{2016}\left(-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}\right)}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=-3^{2016}\)
\(P=\dfrac{3^{2016}-6^{2016}+9^{2016}-12^{2016}+15^{2016}-18^{2016}}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=\dfrac{\left(3^{2016}-6^{2016}\right)+\left(9^{2016}-12^{2016}\right)+\left(15^{2016}-18^{2016}\right)}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=\dfrac{3^{2016}\left(1-2^{2016}\right)+3^{2016}\left(3^{2016}-4^{2016}\right)+3^{2016}\left(5^{2016}-6^{2016}\right)}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=\dfrac{3^{2016}\left(1-2^{2016}+3^{2016}-4^{2016}+5^{2016}-6^{2016}\right)}{-\left(1^{2016}-2^{2016}+3^{2016}-4^{2016}+5^{2016}-6^{2016}\right)}\)
\(=-3^{2016}\).
Vậy \(P=-3^{2016}\)
Câu 1:
\(\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}=\frac{a^{2016}-b^{2016}}{c^{2016}-d^{2016}}\)
\(\Rightarrow (a^{2016}+b^{2016})(c^{2016}-d^{2016})=(a^{2016}-b^{2016})(c^{2016}+d^{2016})\)
\(\Leftrightarrow 2(bc)^{2016}=2(ad)^{2016}\Rightarrow (bc)^{2016}=(ad)^{2016}\)
\(\Rightarrow (\frac{a}{b})^{2016}=(\frac{c}{d})^{2016}\)
\(\Rightarrow \frac{a}{b}=\pm \frac{c}{d}\) (đpcm)
Câu 2:
Nếu $a+b+c+d=0$ thì: \(\left\{\begin{matrix} a+b=-(c+d)\\ b+c=-(d+a)\\ c+d=-(a+b)\\ d+a=-(b+c)\end{matrix}\right.\)
\(\Rightarrow M=(-1)+(-1)+(-1)+(-1)=-4\)
Nếu $a+b+c+d\neq 0$
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{5(a+b+c+d)}{a+b+c+d}=5\)
\(\Rightarrow \left\{\begin{matrix} 2a+b+c+d=5a\\ a+2b+c+d=5b\\ a+b+2c+d=5c\\ a+b+c+2d=5d\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} b+c+d=3a(1)\\ a+c+d=3b(2)\\ a+b+d=3c(3)\\ a+b+c=3d(4)\end{matrix}\right.\)
Từ \((1);(2)\Rightarrow b+a+2(c+d)=3(a+b)\Rightarrow c+d=a+b\)
\(\Rightarrow \frac{a+b}{c+d}=1\)
Tương tự: \(\frac{b+c}{d+a}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)
\(\Rightarrow M=1+1+1+1=4\)
có/x+y/ lớn hơn hoặc bằng
/x/+/y/ dấu bằng xảy ra <=>
xy lớn hơn hoặc bằng 0
mà xy=1 =>/x+y/=/x/+/y/ (1)
lại có /x/+/y/-2\(\sqrt{xy}\)\(=\left(\sqrt{x}-\sqrt{y}\right)^2\) lớn hơn hoặc bằng 0
=>/x/+/y/ lớn hơn hoặc bằng 2\(\sqrt{xy}\)=2 (2)
từ (1) và (2)
=>/x+y/ lớn hơn hoặc bằng 2
=> MIN /x+y/ =2
dấu bằng xảy ra
<=> /x+y/=2
hay /x/+/y/ \(=2\sqrt{xy}\)
=>\(\left(\sqrt{x}-\sqrt{y}\right)^2=0\)
=>\(\sqrt{x}=\sqrt{y}=>x=y\)
mà /x+y / =2
TH1 x+y=2=>x=y=1
thay vào M ta tính được M=\(\dfrac{3}{4}\)
TH2 x+y =-2 =>x=y=-1
thay vào M ta được
M=\(\dfrac{3}{4}\)