Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(x=31\Rightarrow30=x-1\)
Thay vào biểu thức ta được:
\(A=x^3-\left(x-1\right).x^2-x^2+1=x^3-x^3+x^2-x^2+1=1\)
b) Ta có: \(x=9\Rightarrow x+1=10\)
Thay vào biểu thức ta được
\(B=x^{14}-\left(x+1\right).x^{13}+\left(x+1\right).x^{12}-\left(x+1\right).x^{11}+.....+x^2.\left(x+1\right)=\left(x+1\right).x+\left(x+1\right)\)
\(\Leftrightarrow B=x^{14}-x^{14}-x^{13}+x^{13}+....+x^3+x^2=x^2+2x+1\)
\(\Leftrightarrow B=x^2-x^2-2x-1=-2.9-1=-19\)
\(x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(=1\)
a, \(A=x^3-30x^2-31x+1\)
\(=x^3-31x^2+x^2-31x+1\)
\(=x^2\left(x-31\right)+x\left(x-31\right)+1\)
\(=\left(x^2+x\right)\left(x-31\right)+1\)
Thay x = 31 \(\Rightarrow A=1\)
Vậy A = 1 khi x = 31
b, tách ra làm tương tự phần a
\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(=1\)
\(a.P(x)=x^7-80x^6+80x^5-80x^4+....+80x+15\)
\(=x^7-79x^6-x^6+79x^5+x^5-79x^4-....-x^2+79x+x+15\)
\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-....-x(x-79)+x+15\)
\(=(x-79)(x^6-x^5+x^4-....-x)+x+15\)
Thay x = 79 vào biểu thức trên , ta có
\(P(79)=(79-79)(79^6-79^5+79^4-...-79)+79+15\)
\(=0+79+15\)
\(=94\)
Vậy \(P(x)=94\)khi x = 79
\(b.Q(x)=x^{14}-10x^{13}+10x^{12}-.....+10x^2-10x+10\)
\(=x^{14}-9x^{13}-x^{13}+9x^{12}+.....-x^3+9x^2+x^2-9x-x+10\)
\(=x^{13}(x-9)-x^{12}(x-9)+.....-x^2(x-9)+x(x-9)-x+10\)
\(=(x-9)(x^{13}-x^{12}+.....-x^2+x)-x+10\)
Thay x = 9 vào biểu thức trên , ta có
\(Q(9)=(9-9)(9^{13}-9^{12}+.....-9^2+9)-9+10\)
\(=0-9+10\)
\(=1\)
Vậy \(Q(x)=1\)khi x = 9
\(c.R(x)=x^4-17x^3+17x^2-17x+20\)
\(=x^4-16x^3-x^3+16x^2+x^2-16x-x+20\)
\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)
\(=(x-16)(x^3-x^2+x)-x+20\)
Thay x = 16 vào biểu thức trên , ta có
\(R(16)=(16-16)(16^3-16^2+16)-16+20\)
\(=0-16+20\)
\(=4\)
Vậy \(R(x)=4\)khi x = 16
\(d.S(x)=x^{10}-13x^9+13x^8-13x^7+.....+13x^2-13x+10\)
\(=x^{10}-12x^9-x^9+12x^8+.....+x^2-12x-x+10\)
\(=x^9(x-12)-x^8(x-12)+....+x(x-12)-x+10\)
\(=(x-12)(x^9-x^8+....+x)-x+10\)
Thay x = 12 vào biểu thức trên , ta có
\(S(12)=(12-12)(12^9-12^8+....+12)-12+10\)
\(=0-12+10\)
\(=-2\)
Vậy \(S(x)=-2\)khi x = 12
Hình như đây là toán lớp 7 có trong phần trắc nghiệm của thi HSG huyện
Chúc bạn học tốt , nhớ kết bạn với mình
a,\(=x^3+x^2-\left(31x^2+31x\right)\)
\(=x^2\left(x+1\right)-31x\left(x+1\right)\)
\(=\left(x^2-31x\right)\left(x+1\right)=\left(31^2-31^2\right)\left(31+1\right)=0\)
b, Phân tích 3 số hạng đầu ta có:\(=x^5-x^4-\left(14x^4-14x^3\right)=\left(x^4-14x^3\right)\left(x-1\right)=\left(14^4-14^4\right)\left(x-1\right)=0\)
Thay x= 14 vào ta có: \(-29.14^2+13.14=-5502\)
c, do x=9 => x+1=10; Thay vào ta có:
\(C=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-...+\left(x+1\right)x^2-\left(x+1\right)x+10\)
\(C=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-....+x^3+x^2-x^2-x+10\)
\(C=-x+10=-9+10=1\)
CHÚC BẠN HỌC TỐT.....
a, x = 79 => x + 1 = 80
Ta có:\(P\left(x\right)=x^7-80x^6+80x^5-80x^4+...+80x+15\)
\(=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+...+\left(x+1\right)x+15\)
\(=x^7-x^7-x^6+x^6+x^5-x^5-x^4+...+x^2+x+15\)
\(=x+15=79+15=94\)
Còn lại tương tự
\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(=1\)
Lời giải:
a) Với \(x=79\)
\(P(x)=x^7-80x^6+80x^5-80x^4+...+80x+15\)
\(=(x^7-79x^6)-(x^6-79x^5)+(x^5-79x^4)-....-(x^2-79x)+x+15\)
\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-...-x(x-79)+x+15\)
\(=(x^6-x^5+x^4-...-x)(x-79)+x+15\)
\(=(x^6-x^5+x^4-...-x)(79-79)+79+15=79+15=94\)
b) Hoàn toàn tương tự phần a.
\(Q(x)=(x^{14}-9x^{13})-(x^{13}-9x^{12})+(x^{12}-9x^{11})-...+(x^2-9x)-x+10\)
\(=x^{13}(x-9)-x^{12}(x-9)+x^{11}(x-9)-...+x(x-9)-x+10\)
\(=(x-9)(x^{13}-x^{12}+x^{11}-...+x)-x+10\)
\(=(9-9)(x^{13}-x^{12}+...+x)-9+10=0-9+10=1\)
c)
\(R(x)=(x^4-16x^3)-(x^3-16x^2)+(x^2-16x)-x+20\)
\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)
\(=(x-16)(x^3-x^2+x)-x+20\)
Với $x=16$ thì $Q(x)=(16-16)(x^3-x^2+x)-16+20=0-16+20=4$
d)
\(S(x)=(x^{10}-12x^9)-(x^9-12x^8)+(x^8-12x^7)-....+x(x-12)-x+10\)
\(=x^9(x-12)-x^8(x-12)+x^7(x-12)-...+x(x-12)-x+10\)
\(=(x-12)(x^9-x^8+x^7-..+x)-x+10\)
\(=(12-12)(x^9-x^8+x^7-...+x)-12+10=-12+10=-2\)
VÀO TCN
Loa loa, tin nóng hổi. CẶP VỢ CHỒNG SON TRẺ NHẤT VIỆT NAM ĐÂY
https://olm.vn/thanhvien/nhu140826
https://olm.vn/thanhvien/trungkienhy79
Tình yêu đã giúp cho hai anh chị 2k6 này bất chấp tất cả (học tập, vui chơi),nể thật.
vÀO TCN CỦA MK
Loa loa, tin nóng hổi. CẶP VỢ CHỒNG SON TRẺ NHẤT VIỆT NAM ĐÂY
https://olm.vn/thanhvien/nhu140826
https://olm.vn/thanhvien/trungkienhy79
Tình yêu đã giúp cho hai anh chị 2k6 này bất chấp tất cả (học tập, vui chơi),nể thật.
\(B=x^5-15x^4+16x^3-29x^2+13x\)
\(=x^5-14x^4-x^4+14x^3+2x^3-28x^2-x^2+14x-x+14-14\)
\(=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-\left(x-14\right)-14\)
\(=\left(x^4-x^3+2x^2-x-1\right)\left(x-14\right)-14\)
Thay x = 14 => B = -14
Vậy...
phần còn lại tách ra làm tương tự nhé
\(A=x^3-30x-31x+1\)
=\(x^3-31x^2+x^2-31x+1\)
=\(x^2\left(x-31\right)+x\left(x-31\right)+1\)
=1(do x=31)
\(B= x^4 -17x^3 +17x^2 -17x + 20 tại x= 16\)
\(=x^4-16x^3-x^3+16x^2+x^2-16x-x+20\)
=\(x^3\left(x-16\right)+x^2\left(x-16\right)+x\left(x-16\right)-x+20\)
=-16+20=4
Thay 30 = x - 1, 2 câu kia tương tự