K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

a)  \(A=x^2+2xy+y^2-4x-4y+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(=3^2-4.3+1=-2\)

b)  \(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=7^2+2.7+37=100\)

c)  \(C=x^2+4y^2-2x+10+4xy-4y\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(=5^2-2.5+10=25\)

9 tháng 7 2018

a) \(A=x^2+2xy+y^2-4x-4v+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(=3^2-4.3+1=-2\)

4 tháng 8 2017
(x+y)^2 - 4(x+y) + 1 = 3^2 - 4.3 +2 = -2
4 tháng 8 2017

Chả bik x- y= 5 có phải trong đề ko, giờ giải x+y = 3 trước

Ta có x2+y2 + 2xy - 4x - 4y + 1 = (x2+ 2xy + y2) -  4 ( x+y) + 1 = (x+y)^2 - 4(x+y) + 1  (1)

Thay x+y = 3 vào 1, có: 

3^2 - 4.3 + 1 = 9-12 + 1 = -2 

Vậy GTBT x2+y2 + 2xy - 4x - 4y + 1  vs x+ y = 3 là -2

25 tháng 10 2023

a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)

b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)

Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)

c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)

Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)

17 tháng 10 2021

a) \(A=4x^2-4x+1+9-4x^2=-4x+10\)

\(=-4.\dfrac{1}{4}+10=9\)

b) \(B=x^3+xy-x^3-8y^3=y\left(x-8y^2\right)\)

\(=\left(-2\right).\left(32-32\right)=0\)

17 tháng 10 2021

a: Ta có: \(A=\left(2x-1\right)^2+\left(3-2x\right)\left(3+2x\right)\)

\(=4x^2-4x+1+9-4x^2\)

\(=-4x+10\)

\(=-4\cdot\dfrac{1}{4}+10=-1+10=9\)

8 tháng 2 2022

A=\(\left|x^2+y^2+5+2x-4y\right|-\left|-\left(x+y-1\right)^2+2xy\right|\)

\(\Leftrightarrow A=x^2+y^2+5+2x-4y-\left|-\left(x^2+2xy-2x-2y+y^2+1\right)\right|+2xy\)

\(\Leftrightarrow A=x^2+y^2+5+2x-4y+x^2-2xy+2x+2y-y^2-1+2xy\)

\(\Leftrightarrow A=2x^2-4+4x-2y\)

thay \(x=2^{2011};y=16^{503}\) vào A ta được:

\(2.\left(2^{2011}\right)^2-4+4.\left(2^{2011}\right)-2.\left(16^{503}\right)\)

A không có giá trị

 

24 tháng 9

a; A = (7\(x\) + 5)2 + (3\(x-5\))2 - (10 - 6\(x\)).(5 + 7\(x\)

   A = 49\(x^2\) + 70\(x\) + 25 + 9\(x^2\) - 30\(x\) + 25 - 50 - 70\(x\) + 30\(x\) + 42\(x^2\)

   A = (49\(x^2\) + 9\(x^2\) + 42\(x^2\)) + (70\(x-70x\)) - (30\(x\) - 30\(x\)) + (25+25-50)

   A =  100\(x^2\) + 0 + 0 + (50 - 50)

   A = 100\(x^2\) + 0 + 0 + 0

   A = 100\(x^2\) 

Thay  \(x=-2\) vào A = 100\(x^2\) ta có:

  A = 100.(-2)2

  A = 100.4

 A =  400.