Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=9x^2+42x+49\) tại 1, ta có:
\(\Rightarrow A=9.1^2+42.1+49\)
\(\Rightarrow A=100\)
b) \(B=25x^2-2xy+\frac{1}{25y^2}\) tại \(x=\frac{-1}{5};y=-5\)
\(\Rightarrow B=25.\frac{1}{5^2}-2.\left(\frac{-1}{5}\right).\left(-5\right)+\frac{1}{25.5^2}\)
\(\Rightarrow B=\frac{-624}{625}\)
\(4x^2-28x+49=\left(2x\right)^2-2\cdot2x\cdot7+7^2=\left(2x-7\right)^2\)
thay x=4 vào ta được \(\left(2\cdot4-7\right)^2=\left(8-7\right)^2=1^2=1\)
vậy \(4x^2-28x+49=1\)khi x=4
\(9x^2+42x+49=\left(3x\right)^2+2\cdot3x\cdot7+7^2=\left(3x+7\right)^2\)
thay x=1 và ta được \(\left(3\cdot1+7\right)^2=10^2=100\)
vậy \(9x^2+42x+49=100\)đạt được khi x=1
\(25x^2-2xy+\frac{1}{25y^2}=\left(5x\right)^2-2\cdot5x\cdot\frac{1}{5y}+\left(\frac{1}{5y}\right)^2=\left(5x-\frac{1}{5y}\right)^2\)
thay x=\(\frac{-1}{5}\)và y=-5 vào ta được \(\left[5\cdot\left(\frac{-1}{5}\right)-\frac{1}{5\cdot\left(-5\right)}\right]^2=\left(1-\frac{1}{-25}\right)^2=\left(\frac{26}{25}\right)^2=...\)
vậy \(25x^2-2xy+\frac{1}{25y^2}=\left(\frac{26}{25}\right)^2\)khi x=\(\frac{-1}{5}\)và y=-5
4x2 - 28x + 49 = ( 2x )2 - 2.2x.7 + 72 = ( 2x - 7 )2
Thế x = 4 ta được : ( 2 . 4 - 7 )2 = 12 = 1
9x2 + 42x + 49 = ( 3x )2 + 2.3x.7 + 72 = ( 3x + 7 )2
Thế x = 1 ta được : ( 3.1 + 7 )2 = 102 = 100
25x2 - 2xy + 1/25y2 = ( 5x )2 - 2.5x.1/5y + ( 1/5y )2 = ( 5x - 1/5y )2
Thế x = -1/5 , y = -5 ta được : \(\left[5\cdot\left(-\frac{1}{5}\right)-\frac{1}{5}\cdot\left(-5\right)\right]^2=\left[-1+1\right]^2=0\)
6) c) x3 - x2 + x = 1
<=> x3 - x2 + x - 1 = 0
<=> (x3 - x2) + (x - 1) = 0
<=> x2 (x - 1) + (x - 1) = 0
<=> (x - 1) (x2 + 1) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
* x - 1 = 0 => x = 1
* x2 + 1 = 0 => x2 = -1 => x = -1
Vậy x = 1 hoặc x = -1
Bài 5:
a) Đặt \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{8}\)
b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)
=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)
\(=\left(7x+6-5+6x\right)^2\)
\(=\left(13x+1\right)^2\)
a)
Ta có:
( x + 1 ) ( x + 3 ) ( x + 5 ) ( x + 7 ) + 2019
= [ ( x + 1 ) ( x + 7 ) ] . [ ( x + 3 ) ( x + 5 ) ] + 2019
= ( x2 + 8x + 7 )( x2 + 8x + 15 ) + 2019 ( 1 )
* Đặt x2 + 8x + 10 = a
thì ( 1 ) trở thành:
( a - 3 ) ( a + 5 ) + 2019
= a2 + 2a - 15 + 2019
= a ( a + 2 ) + 2004
=> Pt đã cho chia cho a = x2 + 8x + 10 dư 2004.
Vậy ..........
b)
- Vì x / (x2 - x + 1) = 1/5 => x2 - x + 1 = 5x
Ta có:
A = x2 / (x4 + x2 + 1)
A = x2 / [( x2 - x + 1 )( x2 + x + 1 )]
A = x2 / {5x . [( x2 - x + 1 ) + 2x ]}
A = x2 / [5x . ( 5x + 2x )]
A = x2 / ( 5x . 7x )
A = x2 / 35x2
A = 1/35
Vậy A = 1/35.
a, +) Thay y = -2 vào phương trình trên ta có :
( -2 + 1 )2 = 2 . ( -2 ) + 5
1 = 1
Vậy y = -2 thỏa mãn phương trình trên
+) Thay y = 1 vào phương trình trên , ta có :
( 1 + 1)2 = 2 . 1 + 5
4 = 7
Vậy y = 1 thỏa mãn phương trình trên
b, +) Thay x =-3 vaò phương trình trên , ta có :
( -3 + 2 )2 = 4 . ( -3 ) + 5
2 = -7
Vậy x = -3 không thỏa mãn phuong trình trên
+) Thay x = 1 vào phương trình trên , ta có :
( 1 + 2 )2 = 4 . 1 + 5
9 = 9
Vậy x = 1 thỏa mãn phương trình trên
c, +) Thay t = -1 vào phương trình , ta có :
[ 2 . ( -1 ) + 1 ]2 = 4 . ( -1 ) + 5
1 = 1
Vậy t = -1 thỏa mãn phương trình trên
+) Thay t = 3 vào phương trình trên , ta có :
( 2 . 3 + 1 )2 = 4 . 3 + 5
49 = 17
Vậy t = 3 không thỏa mãn phương trình trên
d, +) Thay z = -2 vào phương trình trên , ta có :
( -2 + 3 )2 = 6 . ( -2 ) + 10
1 = -2
Vậy z = -2 không thỏa mãn phương trình trên
+) Thay z = 1 vào phương trình trên , ta có :
( 1 + 3 )2 = 6 . 1 + 10
16 = 16
Vậy z =1 thỏa mãn phương trình trên
Bài 1.
x = 14
=> 13 = x - 1 ; 15 = x + 1 ; 16 = x + 2 ; 29 = 2x + 1
Thế vào N(x) ta được :
x5 - ( x + 1 )x4 + ( x + 2 )x3 - ( 2x + 1 )x2 + ( x - 1 )x
= x5 - x5 - x4 + x4 + 2x3 - 2x3 - x2 + x2 - x
= -x = -14
Bài 2.
a) ( 1 - x - 2x3 + 3x2 )( 1 - x + 2x3 - 3x2 )
= [ ( 1 - x ) - ( 2x3 - 3x2 ) ][ ( 1 - x ) + ( 2x3 - 3x2 ) ]
= ( 1 - x )2 - ( 2x3 - 3x2 )2
= 1 - 2x + x2 - [ ( 2x3 )2 - 2.2x3.3x2 + ( 3x2 )2 ]
= x2 - 2x + 1 - ( 4x6 - 12x5 + 9x4 )
= x2 - 2x + 1 - 4x6 + 12x5 - 9x4
= -4x6 + 12x5 - 9x4 + x2 - 2x + 1
b) ( x - y + z )2 + ( z - y )2 + 2( x - y + z )( y - z )
= ( x - y + z )2 + ( z - y )2 - 2( x - y + z )( z - y )
= [ ( x - y + z ) - ( z - y ) ]2
= ( x - y + z - z + y )2
= x2
\(a.A=9x^2+42x+49\\ =\left(3x\right)^2+2\cdot3x\cdot7+7^2\\ =\left(3x+7\right)^2\)
Thay x = 1 vào A ta có:
`A=(3*1+7)^2=10^2=100`
\(b.B=25x^2-2xy+\dfrac{1}{25}y^2\\ =\left(5x\right)^2-2\cdot5x\cdot\dfrac{1}{5}y+\left(\dfrac{1}{5}y\right)^2\\ =\left(5x-\dfrac{1}{5}y\right)^2\)
Thay x = -1/5 và y = -5 vào B ta có:
\(B=\left(5\cdot\dfrac{-1}{5}-\dfrac{1}{5}\cdot-5\right)^2=\left(-1+1\right)^2=0\)