\(\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

\(a.\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}=\sqrt{18+2.\sqrt{18}.\sqrt{3}+3}+\sqrt{18-2.\sqrt{18}.\sqrt{3}+3}=\sqrt{\left(\sqrt{18}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}=\sqrt{18}+\sqrt{3}+\sqrt{18}-\sqrt{3}=2\sqrt{18}=6\sqrt{2}\)

29 tháng 6 2016

bạn ơi hình như âu tính giá trị biểu thức N bị sai chỗ phân tích \(\sqrt{21-12\sqrt{3}}\)thì phải ,hình như phải bằng \(\left(2\sqrt{3}-3\right)^2\)

25 tháng 5 2016

a)\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{1}=1}\)

b) \(B=\sqrt{\sqrt{3}-\sqrt{1+\sqrt{21-6\sqrt{12}}}=\sqrt{\sqrt{3}-\sqrt{1+\sqrt{\left(3-2\sqrt{3}\right)^2}}}}=\sqrt{\sqrt{3}-\sqrt{2\sqrt{3}-2}}\)c) 

\(C=\sqrt{7+3\sqrt{5}}+\sqrt{3-\sqrt{5}}=\frac{\sqrt{14+6\sqrt{5}}+\sqrt{6-2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}=\frac{2+2\sqrt{5}}{\sqrt{2}}=\sqrt{2}+\sqrt{10}=\sqrt{2}\left(\sqrt{5}+1\right)\)

11 tháng 2 2018

\(A=\sqrt{\left(3\sqrt{2}\right)^2+2.3\sqrt{2}.\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}\right)^2-2.3.\sqrt{2}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(A=\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)
\(A=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}=6\sqrt{2}\)

11 tháng 2 2018

Cảm ơn ạ

19 tháng 5 2018

\(x+y+z=2\sqrt{x-34}+4\sqrt{y-21}+6\sqrt{z-4}+45\)

ĐK: \(x\ge34;y\ge21;z\ge4\)

\(pt\Leftrightarrow x-34-2\sqrt{x-34}+1+y-21-4\sqrt{y-21}+4+z-4-6\sqrt{z-4}+9=0\)

\(\Leftrightarrow\left(\sqrt{x-34}-1\right)^2+\left(\sqrt{y-21}-2\right)^2+\left(\sqrt{z-4}-3\right)^2=0\left(1\right)\)

Dễ Thấy: \(VT_{\left(1\right)}\ge0\) nên dấu "=" khi

\(\hept{\begin{cases}\sqrt{x-34}=1\\\sqrt{y-21}=2\\\sqrt{z-4}=3\end{cases}}\) 

Giải tiếp rồi thay vào T

6 tháng 6 2019

a) \(\sqrt{11-2\sqrt{10}}\)

\(=\sqrt{10-2\sqrt{10}+1}\)

\(=\sqrt{\left(\sqrt{10}-1\right)^2}\)

\(=\sqrt{10}-1\)

b) \(\sqrt{21-6\sqrt{6}}\)

\(=\sqrt{\left(3\sqrt{2}\right)^2-2\cdot3\sqrt{2}\cdot\sqrt{3}+3}\)

\(=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)

\(=3\sqrt{2}-\sqrt{3}\)

25 tháng 7 2020

\(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{\frac{10+4\sqrt{6}}{2}}-\sqrt{\frac{10-4\sqrt{6}}{2}}\)

\(=\sqrt{\frac{6+2.2.\sqrt{6}+4}{2}}-\sqrt{\frac{6-2.2.\sqrt{6}+4}{2}}\)

\(=\frac{\sqrt{\left(\sqrt{6}+2\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{6}-2\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{6}+2\right|-\left|\sqrt{6}-2\right|}{\sqrt{2}}\)

\(=\frac{\sqrt{6}+2-\sqrt{6}+2}{\sqrt{2}}\)

\(=\frac{4}{\sqrt{2}}\)

\(=2\sqrt{2}\)

25 tháng 7 2020

= 3,14626437-0,3178372452

=2,828427125

MIK KO GHI LẠI ĐỀ NHA 

6 tháng 6 2019

a, \(\sqrt{11-2\sqrt{10}}\) = \(\sqrt{1-2\sqrt{10}+\sqrt{10}^2}\) = \(\sqrt{\left(1-\sqrt{10}\right)^2}\)

= \(\left|1-\sqrt{10}\right|\)

= \(\sqrt{10}-1\)

b, \(\sqrt{21-6\sqrt{6}}\) = \(\sqrt{\left(3\sqrt{2}\right)^2-2\cdot3\cdot\sqrt{2}\cdot\sqrt{3}+\sqrt{3}^2}\)

= \(\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)

= \(\left|3\sqrt{2}-\sqrt{3}\right|\)

= \(3\sqrt{2}\) - \(\sqrt{3}\)

10 tháng 10 2019

banhqua