Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1.2}{99.100}\)
\(=\frac{2}{9900}=\frac{1}{4950}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
Ta có : \(\frac{1}{1\times2}+\frac{1}{2\times3}+....+\frac{1}{99\times100}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{100}=\frac{99}{100}\)
Bài này lớp 6 phải không bạn
A=1/1-1/2+1/2-1/3+1/3-1/4+1/5-1/6+......................+1/99-1/100
A=1/1-1/100
A=99/100
Nếu bạn cảm thấy bài mình đúng thì cho mình một "lai"
\(\Rightarrow A=5\left(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{99x100}\right)\)
\(\Rightarrow A=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A=5\left(1-\frac{1}{100}\right)\)
\(\Rightarrow A=\frac{5x99}{100}=\frac{99}{20}\)
\(A=\frac{5}{1}-\frac{5}{2}+\frac{5}{2}-\frac{5}{3}+\frac{5}{3}-\frac{5}{4}+....+\frac{5}{99}-\frac{5}{100}\)
\(A=\frac{5}{1}+\left(-\frac{5}{2}+\frac{5}{2}\right)+\left(-\frac{5}{3}+\frac{5}{3}\right)+\left(-\frac{5}{4}+\frac{5}{4}\right)+...\left(-\frac{5}{99}+\frac{5}{99}\right)+\frac{5}{100}\)
\(A=\frac{5}{1}+0+0+....+0+\frac{5}{100}\)
\(A=\frac{500}{100}+\frac{5}{100}=\frac{205}{100}=\frac{101}{20}\)
Đúng 100%
Đúng 100%
Đúng 100%
Ta có:
\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
\(=\frac{1}{2}.\frac{4}{6}.\frac{9}{12}....\frac{9801}{9900}.\frac{10000}{10100}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}=\frac{1.2.3...99.100}{2.3.4...100.101}=\frac{1}{101}\)(Tối giản)
\(a=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
\(a=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(a=1-\frac{1}{100}=\frac{100-1}{100}=\frac{99}{100}\)
Vậy \(a=\frac{99}{100}\)