Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)
Áp dụng tc dtsbn:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)
\(\dfrac{a}{6}=\dfrac{b}{9}\)
\(\Leftrightarrow9a=6b\)
\(\Rightarrow3a=2b\)(chia cả 2 vế cho 3)
\(\Rightarrow3a-2b=0\Rightarrow\dfrac{3a-2b}{3a+2b}=0\)
Chúc bn học tốt
Ta có: `a/6 = b/9` `-> 9a = 6b`
`-> 3a = 2b`
Vì `3a = 2b` nên `3a - 2b = 0`.
`-> A = (3a - 2b)/(3a + 2b) = 0/(3a + 2b) = 0`
Vậy giá trị biểu thức `A` là `0`.
a-b=7 nên a=b+7
\(P=\dfrac{3\left(b+7\right)-b}{2\left(b+7\right)+7}+\dfrac{3b-b-7}{2b-7}=1+1=2\)
\(\dfrac{a}{b}=\dfrac{3}{4}\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{2a-5b}{-14}=\dfrac{a-3b}{-9}=\dfrac{4a+b}{16}=\dfrac{8a-2b}{16}\\ \Leftrightarrow A=\dfrac{-14}{-9}-\dfrac{16}{16}=\dfrac{14}{9}-1=\dfrac{5}{9}\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2b+2c+2a}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\dfrac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\Rightarrow2b=3a-c\)\(\dfrac{2c-b+a}{b}=2\Rightarrow2c-b+a=2b\Rightarrow2c=3b-a\)
\(\dfrac{2a+b-c}{c}=2\Rightarrow2a+b-c=2c\Rightarrow2a=3c-b\)
\(P=\dfrac{\left(2a-b\right)\left(2b-c\right)\left(2c-a\right)}{2a.2b.2c}=\dfrac{\left(2a-b\right)\left(2b-c\right)\left(2c-a\right)}{8abc}\)
Đặt \(a=\dfrac{10}{3}b\Rightarrow\dfrac{3.\dfrac{10}{3}b-2b}{\dfrac{10}{3}b-3b}=\dfrac{10b-2b}{\dfrac{1}{3}b}=\dfrac{8}{\dfrac{1}{3}}=24\)
Giải:
\(\dfrac{a}{b}=\dfrac{10}{3}\Rightarrow\dfrac{a}{10}=\dfrac{b}{3}.\)
Đặt \(\dfrac{a}{10}=\dfrac{b}{3}=k\Rightarrow a=10k;b=3k.\)
Ta có:
\(A=\dfrac{3a-2b}{a-3b}=\dfrac{3.10k-2.3k}{10k-3.3k}=\dfrac{30k-6k}{10k-9k}=\dfrac{\left(30-6\right)k}{\left(10-9\right)k}=\dfrac{24}{1}=24.\)
Vậy \(A=24.\)