Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,\) Ta có:
\(\dfrac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}\\ =\dfrac{1}{\sqrt{n}.\sqrt{n-1}\left(\sqrt{n}+\sqrt{n-1}\right)}\\ =\dfrac{\sqrt{n}}{\sqrt{n}.\sqrt{n-1}}-\dfrac{\sqrt{n-1}}{\sqrt{n}.\sqrt{n-1}}\\ =\dfrac{1}{\sqrt{n-1}}-\dfrac{1}{\sqrt{n}}\)
Thay:
\(n=2\) \(\Leftrightarrow\dfrac{1}{2\sqrt{1}+1\sqrt{2}}=\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}\)
\(n=3\Leftrightarrow\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\)
\(...\)
\(n=2007\Leftrightarrow\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}=\dfrac{1}{\sqrt{2006}}-\dfrac{1}{\sqrt{2007}}\\ \)
\(2\left(\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+...+\dfrac{1}{\sqrt{97}+\sqrt{99}}\right)\)
\(>\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+...+\dfrac{1}{\sqrt{97}+\sqrt{99}}+\dfrac{1}{\sqrt{99}+\sqrt{101}}\)
\(=\dfrac{1}{2}\left(\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{101}-\sqrt{99}\right)\)
\(=\dfrac{1}{2}\left(\sqrt{101}-\sqrt{1}\right)>\dfrac{9}{2}\)
\(\Rightarrow\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+...+\dfrac{1}{\sqrt{97}+\sqrt{99}}>\dfrac{9}{4}\)
A = \(\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+\dfrac{1}{\sqrt{7}+\sqrt{9}}+...+\dfrac{1}{\sqrt{97}+\sqrt{99}}\)
= \(\dfrac{1}{2}\left(\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+\sqrt{9}-\sqrt{7}+...+\sqrt{99}-\sqrt{97}\right)\)
= \(\dfrac{1}{2}\left(\sqrt{99}-\sqrt{3}\right)\)
B = 35 + 335 + 3335 + ... + 3333...(99 số 3)35
= 33 + 2 + 333 + 2 + 3333 + 2 + ... + 333...33 + 2
= 2 . 99 + (33 + 333 + 3333 + ... + 333...3)
= 198 + \(\dfrac{1}{3}\)(99 + 999 + 9999 + ... + 999...99)
= 198 + \(\dfrac{1}{3}\)(102 - 1 + 103 - 1 + 104 - 1 + ... + 10100 - 1)
= \(\left(\dfrac{10^{101}-10^2}{27}\right)+165\)
\(1.A=\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right).\dfrac{5-\sqrt{5}}{\sqrt{5}-1}=\left(\dfrac{3+\sqrt{5}}{9-5}-\dfrac{3-\sqrt{5}}{9-5}\right).\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}=\dfrac{2\sqrt{5}}{4}.\sqrt{5}=\dfrac{5}{2}\) \(2.B=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}=\dfrac{\sqrt{2}-1}{2-1}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}+...+\dfrac{\sqrt{100}-\sqrt{99}}{100-99}=\sqrt{100}-1\)
\(3.C=\sqrt[3]{7+5\sqrt{2}}-\sqrt[3]{5\sqrt{2}-7}=\sqrt[3]{\left(\sqrt{2}\right)^3+3.2.1+3.\sqrt{2}.1+1}-\sqrt[3]{\left(\sqrt{2}\right)^3-3.2.1+3.\sqrt{2}.1-1}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}=\sqrt{2}+1-\left(\sqrt{2}-1\right)=2\) \(4.Sai-đề\) ???
Sorry và cám ơn bạn.
4.\(\sqrt[3]{9+4\sqrt{5}}\) + \(\sqrt[3]{9-4\sqrt{5}}\)
2]\(\sqrt{3}\)+1+\(\sqrt{4-4\sqrt{3}+3}\)=\(\sqrt{3}+1+\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}+1+2-\sqrt{3}=3\)
4\(\left(\dfrac{\sqrt{3}.\left(2+\sqrt{3}\right)+2.\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right).\left(2+\sqrt{3}\right)}\right)=\dfrac{\sqrt{3}.\left(2+\sqrt{3}\right)+2.\left(2-\sqrt{3}\right)}{1}\)
1: \(=2\sqrt{7}-12\sqrt{7}+15\sqrt{7}+27\sqrt{7}=32\sqrt{7}\)
3: \(=\sqrt{5}-2-\sqrt{14+6\sqrt{5}}\)
\(=\sqrt{5}-2-3-\sqrt{5}=-5\)
4: \(=2\sqrt{3}+3+4-2\sqrt{3}=7\)
5: \(=3-\sqrt{2}+3+\sqrt{2}+4-3=7\)
6: \(=\sqrt{\dfrac{6+2\sqrt{5}}{4}}+\sqrt{\dfrac{14-6\sqrt{5}}{4}}\)
\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}}{2}=\dfrac{4}{2}=2\)
8: \(=\sqrt{5}-1+\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{4}}-\sqrt{\dfrac{\left(3+\sqrt{5}\right)^2}{4}}\)
\(=\sqrt{5}-1+\dfrac{3-\sqrt{5}}{2}-\dfrac{3+\sqrt{5}}{2}\)
\(=\dfrac{2\sqrt{5}-2+3-\sqrt{5}-3-\sqrt{5}}{2}=\dfrac{-2}{2}=-1\)
Nhận xét 1: từng hạng tử của A có dạng:
\(\dfrac{1}{\sqrt{x}+\sqrt{x+2}}\left(x\ge3\right)\)
Nhận xét 2:
\(\left(\sqrt{x+2}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{x+2}\right)=\left(x+2\right)-x=2\)
\(\Rightarrow\dfrac{2}{\sqrt{x}+\sqrt[]{x+2}}=-\sqrt{x}+\sqrt{x+2}\)
Áp dụng vào A:
\(2A=\dfrac{2}{\sqrt{3}+\sqrt{5}}+\dfrac{2}{\sqrt{5}+\sqrt{7}}+...+\dfrac{2}{\sqrt{97}+\sqrt{99}}\)
\(=\left(-\sqrt{3}+\sqrt{5}\right)+\left(-\sqrt{5}+\sqrt{7}\right)+...+\left(-\sqrt{97}+\sqrt{99}\right)\)
\(=-\sqrt{3}+\sqrt{99}\Leftrightarrow A=-2\sqrt{3}+2\sqrt{99}\)
A = \(\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+\dfrac{1}{\sqrt{7}+\sqrt{9}}+...+\dfrac{1}{\sqrt{97}+\sqrt{99}}\)
=
\(\dfrac{\sqrt{5}-\sqrt{3}}{\left(\sqrt{3}+\sqrt{5}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)}+\dfrac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{5}+\sqrt{7}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)}+\dfrac{\sqrt{9}-\sqrt{7}}{\left(\sqrt{7}+\sqrt{9}\right)\cdot\left(\sqrt{9}-\sqrt{7}\right)}+...+\dfrac{\sqrt{99}-\sqrt{97}}{\left(\sqrt{97}+\sqrt{99}\right)\cdot\left(\sqrt{99}-\sqrt{97}\right)}\)
= \(\dfrac{\sqrt{5}-\sqrt{3}}{5-3}+\dfrac{\sqrt{7}-\sqrt{5}}{7-5}+\dfrac{\sqrt{9}-\sqrt{7}}{9-7}+...+\dfrac{\sqrt{99}-\sqrt{97}}{99-97}\)
=\(\dfrac{\sqrt{5}-\sqrt{3}}{2}+\dfrac{\sqrt{7}-\sqrt{5}}{2}+\dfrac{\sqrt{9}-\sqrt{7}}{2}+...+\dfrac{\sqrt{99}-\sqrt{97}}{2}\)
=\(\dfrac{1}{2}\cdot\left(\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+\sqrt{9}-\sqrt{7}+...+\sqrt{99}-\sqrt{97}\right)\)
= \(\dfrac{1}{2}\cdot\left(-\sqrt{3}+\sqrt{99}\right)\)
= \(\dfrac{3\sqrt{11}-\sqrt{3}}{2}\)