Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1^2+3^2+5^2+7^2+...+2023^2\right).\left(4^3-8^2\right)\\ =\left(1^2+3^2+5^2+7^2+...+2023^2\right).\left(64-64\right)\\ =\left(1^2+3^2+5^2+7^2+...+2023^2\right).0=0\)
Lý thuyết: với toán tử % là phép lấy dư, khi đó:
\(a^b\%m=\left(a\%10\right)^{b\%4}\%m\)
a) \(3^{2022}\%7=3^2\%7=2\)
b) \(62^{78}\%15=2^2\%15=4\)
c) \(3^{2023}\%10=3^3\%10=7\)
d) \(2^{2000}\%5=2^0\%5=1\)
số tự nhiên n thỏa mãn : 2n - 1 - 2 - 22 - 23 - .....- 22020 = 1 là :
a. n=2020
b. n=2021
c.n=2022
d.n=2023
\(A=1+2+2^2+2^3+...+2^{2020}\)
\(2A=2+2^2+2^3+2^4+...+2^{2021}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2021}\right)-\left(1+2+2^2+2^3+...+2^{2020}\right)\)
\(A=2^{2021}-1\)
\(2^n-A=1\)
\(\Leftrightarrow A=2^n-1\)
Suy ra \(n=2021\)
Chọn b.
số tự nhiên n thỏa mãn : 2n - 1 - 2 - 22 - 23 - .....- 22020 = 1 là :
a. n=2020
b. n=2021
c.n=2022
d.n=2023
M = \(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{2023^2}\) > 1 (1)
M = \(\dfrac{1}{1.1}+\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2023.2023}\)
1 = 1
\(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)
\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)
\(\dfrac{1}{4.4}\) < \(\dfrac{1}{3.4}\)
..................
\(\dfrac{1}{2023.2023}\) < \(\dfrac{1}{2022.2023}\)
Cộng vế với vế ta có:
M < 1 + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{2022.2023}\)
M < 1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
M < 2 - \(\dfrac{1}{2023}\) < 2 (2)
Kết hợp (1) và (2) ta có:
1 < M < 2
Vậy M không phải là số tự nhiên.
M = \(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{2023^2}\) > 1 (1)
M = \(\dfrac{1}{1.1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{2023.2023}\)
1 = 1
\(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)
\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)
Cộng vế với vế ta có:
M < 1 + \(\dfrac{1}{1.2}\) +\(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{2022.2023}\)
M < 1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
M < 2 - \(\dfrac{1}{2023}\) < 2 (2)
Kết hợp (1) và (2) ta có: 1 < M < 2
Vậy M không phải là số tự nhiên.
Bài 1:
a) 02002 < 02023
b) 20220 = 20230
c) 549 < 5510
d) ( 4 + 5 )3 > 42 + 52
đ) 92 - 32 > ( 9 - 3 )2
Bài 2:
a) 32 x 43 - 32 + 333
= 9 x 64 - 9 + 333
= 576 - 9 + 333
= 567 + 333
= 900
b) 5 x 43 + 24 x 5 + 410
= 5 x 64 + 24 x 5 + 1
= 5 x ( 64 + 24 ) + 1
= 5 x 88 + 1
= 440 + 1
= 441
c) 23 x 42 + 32 x 5 - 40 x 12023
= 8 x 16 + 9 x 5 - 40 x 1
= 128 + 45 - 40
= 133
Bài 1 :
a) \(0^{2002}=0;0^{2023}=0\Rightarrow0^{2002}=0^{2023}\)
b) \(2022^0=1;2023^0=1\Rightarrow2022^0=2023^0\)
c) \(54^9< 55^9;55^9< 55^{10}\Rightarrow54^9< 55^{10}\)
d) \(\left(4+5\right)^3>\left(4+5\right)^2;\left(4+5\right)^2>4^2+5^2\Rightarrow\left(4+5\right)^3>4^2+5^2\)
đ) \(9^2-3^2=81-9=82;\left(9-3\right)^2=6^2=36\Rightarrow9^2-3^2>\left(9-3\right)^2\)
\(2023A=\dfrac{2023^{31}+4046}{2023^{31}+2}=1+\dfrac{4044}{2023^{31}+2}\)
\(2023B=\dfrac{2023^{32}+4046}{2023^{32}+2}=1+\dfrac{4044}{2023^{32}+2}\)
mà 2023^31+2<2023^32+2
nên A>B
Lời giải:
a.
$A=32.7^2-22.7^2+90.7^2+25.4.51$
$=7^2(32-22+90)+100.51=49.100+100.51=100(49+51)=100.100=10000$
b.
\(X=\frac{1}{2.6}+\frac{1}{4.9}+\frac{1}{6.12}+...+\frac{1}{36.57}+\frac{1}{438.60}\\ =\frac{1}{(1.2).(2.3)}+\frac{1}{(2.2).(3.3)}+\frac{1}{(3.2)(4.3)}+...+\frac{1}{(18.2)(19.3)}+\frac{1}{(19.2).(20.3)}\)
\(=\frac{1}{2.3}(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20})\)
$=\frac{1}{2.3}(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20})$
$=\frac{1}{6}(1-\frac{1}{20})=\frac{19}{120}$
$B=2023-X=2023-\frac{19}{120}=2022\frac{101}{120}$
c/
$C=1+2023+2023^2+2023^3+...+2023^{2022}+2023^{2023}$
$2023C=2023+2023^2+2023^3+2023^4+...+2023^{2023}+2023^{2024}$
$\Rightarrow 2023C-C=2023^{2024}-1$
$\Rightarrow C=\frac{2023^{2024}-1}{2023}< 2023^{2024}-1$
$\Rightarrow C< D$