Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = x^3 + 6x^2y + 12xy^2 + 8y^3
=> A = ( x + 2y )^3
Thay x + 2y = -5 vào A
=> A = ( -5 )^3 = -125
Vậy khi x + 2y = -5 thì A = -125
b) B = 8x^3 - 12x^2y + 6xy^2 - y^3
=> B = ( 2x - y )^3
Thay 2x - y = 1/5 vào A
=> A = ( 1/5 )^3 = 1/125
Vậy khi 2x - y = 1/5 thì B = 1/125
c) C = x^3 + 3x^2 + 3x + 1
=> C = ( x + 1 )^3
Thay x = 99 vào C
=> C = ( 99 + 1 )^3 = 100^3 = 1000000
Vậy khi x = 99 thì C = 1000000
A=26x2+y(2x+y)-10x(x+y)
A=26x2+2xy+y2-10x2-10xy
A=16x2-8xy+y2 =(4x)2-2.4x.y+y2 =(4x-y)2
Thay x=0,25y,ta có: A=(4.0,25y - y)2=(y-y)2=0
B=x3+6x2y+12xy2+8y3
B=x3+3x22y+3x(2y)2+(2y)3 =(x+2y)3
Có x+2y=-5 ⇒ x=-5-2y
Thay x=-5-2y vào, ta có B=(-5-2y+2y)3=(-5)3=-125
a: \(A=\left(x+2y\right)^3=\left(-5\right)^3=-125\)
b: \(B=\left(2x-y\right)^3=\dfrac{1}{125}\)
c: \(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-3x\left(x^2-2x+1+x+1\right)\)
\(=6x^2+2-3x\left(2x^2-x+2\right)\)
\(=6x^2+2-6x^3+3x^2-6x\)
\(=-6x^3+9x^2-6x+2\)
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
Bài 2:
a: \(=x\left(x^2-6x+9\right)=x\left(x-3\right)^2\)
b: \(=\left(x-1\right)\left(x-7\right)\)
c: \(=x\left(x-2y\right)+3\left(x-2y\right)=\left(x-2y\right)\left(x+3\right)\)
Trả lời:
Bài 4:
b, B = ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 )
= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1
= x8 - 1
Thay x = 2 vào biểu thức B, ta có:
28 - 1 = 255
c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 )
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7 + 1
Thay x = 2 vào biểu thức C, ta có:
27 + 1 = 129
d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 )
= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x
= x
Thay x = - 5 vào biểu thức D, ta có:
D = - 5
Bài 5:
a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )
= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4
= x4 - y4
Thay x = 2; y = - 1/2 vào biểu thức A, ta có:
A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16
b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 )
= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5
= a5 + a4b - ab4 - b5
Thay a = 3; b = - 2 vào biểu thức B, ta có:
B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65
c, ( x2 - 2xy + 2y2 ) ( x2 + y2 ) + 2x3y - 3x2y2 + 2xy3
= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y2 + 2xy3
= x4 + 2y4
Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:
( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16
a) 5xy ( x - y ) - 2x + 2y
= 5xy ( x - y ) - 2 ( x - y )
= ( x - y ) ( 5xy - 2 )
b) 6x-2y-x(y-3x)
= 2 ( y - 3x ) - x ( y - 3x )
= ( y - 3x ( ( 2 - x )
c) x2 + 4x - xy-4y
= x ( x + 4 ) - y ( x + 4 )
( x + 4 ) ( x - y )
d) 3xy + 2z - 6y - xz
= ( 3xy - 6y ) + ( 2z - xz )
= 3y ( x - 2 ) + z ( x - 2 )
= ( x - 2 ) ( 3y + z )
a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)
b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)
c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)
d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)
11)
a,4-9x^2=0
(2-3x)(2+3x)=0
2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3
b,x^2 +x+1/4=0
(x+1/2)^2 =0
x+1/2=0
x=-1/2
c,2x(x-3)+(x-3)=0
(x-3)(2x+1)=0
x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2
d,3x(x-4)-x+4=0
3x(x-4)-(x-4)=0
(x-4)(3x-1)=0
x-4=0=>x=4 hoặc 3x-1=0=>x=1/3
e,x^3-1/9x=0
x(x^2-1/9)=0
x(x+1/3)(x-1/3)=0
x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3
f,(3x-y)^2-(x-y)^2 =0
(3x-y-x+y)(3x-y+x-y)=0
2x(4x-2y)=0
4x(2x-y)=0
x=0hoặc 2x-y=0=>x=y/2
b)B=27y^3-27y^2x+9yx^2-x^3
= 27 . (1/3x)^3 - 27.(1/3x)².x + 9.1/3.x.x^2 - x^3
= x^3 - 3x^3 + 3x^3 - x^3
= 0
d) D=50y^2+x(x-2y)+14y(x-y)
=50y^2 +x^2 -2xy +14xy -14y^2
=36y^2 +x^2 +12xy
=(6y + x)^2
=81