\(5.\tan40^0.\tan50^0-\cos^247^0-3-\cos^243^0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2018

ta có : \(5tan40.tan50-cos^247-3-cos^243\)

\(=5tan40.tan\left(90-40\right)-cos^247-cos^2\left(90-47\right)-3\)

\(=5.tan40.cot40-cos^247-sin^247-3=5-1-3=1\)

NV
1 tháng 10 2020

\(A=\frac{\sqrt{2}}{2}cos^252+\frac{\sqrt{2}}{2}sin^252=\frac{\sqrt{2}}{2}\left(sin^252+cos^252\right)=\frac{\sqrt{2}}{2}\)

\(B=\sqrt{3}.cos^247+\sqrt{3}.sin^247=\sqrt{3}\left(sin^247+cos^247\right)=\sqrt{3}\)

5 tháng 6 2019

Botay.com.vn

5 tháng 6 2019

\(\cos^21^o+\cos^289^o=\cos^21^o+\cos^2\left(90^o-1^o\right)=\cos^21^o+\sin^21^o=1\)

\(\cos^22^o+\cos^288^o=\cos^22^o+\cos^2\left(90^o-2^o\right)=\cos^22^o+\sin^22^o=1\)

.......

\(\cos^244^o+\cos^246^o=\cos^244^o+\cos^2\left(90^o-44^o\right)=\cos^244^o+\sin^244^o=1\)

\(\cos^245^o=\left(\frac{\sqrt{2}}{2}\right)^2=\frac{1}{2}\)

=> \(A=1.44+\frac{1}{2}-\frac{1}{2}=44\)

18 tháng 8 2017

Vì sin(\(\alpha\) ) = cos (\(90-\alpha\)) nên \(sin^2\alpha=cos^2\left(90-\alpha\right)\)

a/ \(sin^230-sin^240-sin^250+sin^260=\left(cos^260+sin^260\right)-\left(cos^250+sin^250\right)=1-1=0\)

b/ \(cos^225-cos^235+cos^245-cos^255+cos^265=\left(sin^265+cos^265\right)-\left(sin^255+cos^255\right)+cos^245=1-1+cos^245=cos^245=\dfrac{1}{2}\)

20 tháng 8 2019

\(\cos^25^o+\cos^210^o+....+\cos^285^o\\ =\left(\cos^25^o+\cos^285^o\right)+\left(\cos^210^o+\cos^280^o\right)+...+\left(\cos^240^o+\cos^250^o\right)+\cos^245^o\\ \\ =\left(\cos^25^o+\sin^25^o\right)+\left(\cos^210^o+\sin^210^o\right)+...+\left(\cos^240^o+\sin^240^o\right)+\frac{1}{2}\\ =1+1+...+1+\frac{1}{2}=16+\frac{1}{2}=\frac{33}{2}\)