K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

Với a = 13 thì 45 x a = 45 x 13 = 585

Với a = 26 thì 45 x a = 45 x 26 = 1170 

Với a = 39 thì 45 x a = 45 x 39 = 1755

27 tháng 9 2018

a) Rút gọn E Þ đpcm.

b) Điều kiện xác định E là: x ≠    ± 1  

Rút gọn F ta thu được F = 4 Þ đpcm

9 tháng 12 2018

Điều kiện xác định của phân thức: ax ≠ 0

Tính giá trị của phân thức tại một giá trị của biến cực hay | Toán lớp 8

Với Tính giá trị của phân thức tại một giá trị của biến cực hay | Toán lớp 8 thỏa mãn ĐKXĐ nên thay Tính giá trị của phân thức tại một giá trị của biến cực hay | Toán lớp 8 vào biểu thức ta được: 

Tính giá trị của phân thức tại một giá trị của biến cực hay | Toán lớp 8

11 tháng 8 2017

a.

Bài 1:

a) x2x≠2

Bài 2:

a) x0;x5x≠0;x≠5

b) x210x+25x25x=(x5)2x(x5)=x5xx2−10x+25x2−5x=(x−5)2x(x−5)=x−5x

c) Để phân thức có giá trị nguyên thì x5xx−5x phải có giá trị nguyên.

=> x=5x=−5

Bài 3:

a) (x+12x2+3x21x+32x+2)(4x245)(x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)

=(x+12(x1)+3(x1)(x+1)x+32(x+1))2(2x22)5=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5

=(x+1)2+6(x1)(x+3)2(x1)(x+1)22(x21)5=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5

=(x+1)2+6(x2+3xx3)(x1)(x+1)2(x1)(x+1)5=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5

=[(x+1)2+6(x2+2x3)]25=[(x+1)2+6−(x2+2x−3)]⋅25

=[(x+1)2+6x22x+3]25=[(x+1)2+6−x2−2x+3]⋅25

=[(x+1)2+9x22x]25=[(x+1)2+9−x2−2x]⋅25

=2(x+1)25+18525x245x=2(x+1)25+185−25x2−45x

=2(x2+2x+1)5+18525x245x=2(x2+2x+1)5+185−25x2−45x

=2x2+4x+25+18525x245x=2x2+4x+25+185−25x2−45x

=2x2+4x+2+18525x245x=2x2+4x+2+185−25x2−45x

=2x2+4x+20525x245x=2x2+4x+205−25x2−45x

c) tự làm, đkxđ: x1;x1

19 tháng 12 2019

ê k bn với mk ik

😘 😘 😘 😘

25 tháng 12 2023

a) ĐKXĐ: \(x\ne\pm1\)

b) \(A=\dfrac{x^3-1}{x^2-1}\cdot\left(\dfrac{1}{x-1}-\dfrac{x+1}{x^2+x+1}\right)\left(dkxd:x\ne\pm1\right)\)

\(=\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\left[\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)

\(=\dfrac{x^2+x+1}{x+1}\cdot\dfrac{x^2+x+1-\left(x^2-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2+x+1-x^2+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x+2}{x^2-1}\)

c) Có: \(\left|x+3\right|=1\Leftrightarrow\left[{}\begin{matrix}x+3=1\\x+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\left(tmdk\right)\)

+) Với \(x=-2\), thay vào \(A\), ta được:

\(A=\dfrac{-2+2}{\left(-2\right)^2-1}=0\)

+) Với \(x=-4\), thay vào \(A\), ta được:

\(A=\dfrac{-4+2}{\left(-4\right)^2-1}=-\dfrac{2}{15}\)

\(\text{#}Toru\)

15 tháng 3 2017

20 tháng 8 2015

x=7

=>x+1=8

=> A= x^15 - 8x^14 + 8x^13 - 8x^12 +....- 8x^2 + 8x - 5 

=x15-(x+1)x14+(x+1)x13-(x+1)x12+...-(x+1)x2+(x+1)x-5

=x15-x15-x14+x14+x13-x13-x12+...-x3-x2+x2+x-5

=x-5

=>A=7-5=2

Vậy A=2 khi x=7

5 tháng 9 2018

\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)

\(=2\)