Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
b: \(=x^2z\left(-1+3-7\right)=-5x^2z=-5\cdot\left(-1\right)^2\cdot\left(-2\right)=10\)
c: \(=xy^2\left(5+0.5-3\right)=2.5xy^2=2.5\cdot2\cdot1^2=5\)
\(x=7\Rightarrow8=x+1\left(1\right)\)
Thay \(1\) vào \(F\) ta có:
\(F=x^{2006}-\left(x+1\right)^{2005}+\left(x+1\right)^{2004}-...+\left(x+1\right)x^2-\left(x+1\right)x-5\)
\(F=x^{2006}-x^{2006}-x^{2005}+x^{2005}+x^{2004}-...+x^3+x^2-x^2-x-5\)
\(F=-7-5\)
\(\Rightarrow F=-12\)
\(3x^2-9x=3x\left(x-3\right)\)
Thế x=1 ta được:
\(3.1\left(1-3\right)=3.-2=-6\)
Thế x=\(\dfrac{1}{3}\) ta được:
\(3.\dfrac{1}{3}\left(\dfrac{1}{3}-3\right)=1-\dfrac{8}{3}=-\dfrac{8}{3}\)
- Thay x = 1 vào biểu thức 3x2 – 9x, ta có:
3.12-9.1 = 3.1 - 9 = 3 - 9 = -6
Vậy giá trị của biểu thức 3x2 – 9x tại x = 1 là – 6
- Thay vào biểu thức trên, ta có:
Vậy giá trị của biểu thức 3x2 – 9x tại là
Thay số:
A = 3.(-1).2 - 2.(-1) + 1
A = -3.2 - (-2) + 1
A = -6 + 2 + 1
A = -4 + 1
A = -3
Với x = -1 => Ta có:
A=3.2 - 2x + 1
A= 3.2 - 2. (-1) + 1
A= 6 - (-2) +1
A= 6 + 2 + 1
A= 9
*Thay x = 1 vào biểu thức ta có:
3.12 – 2.1 – 5 = 3 – 2 – 5 = -4
Vậy giá trị của biểu thức 3x2 – 2x – 5 tại x = 1 là -4.
*Thay x = -1 vào biểu thức ta có:
3.(-1)2 – 2.(-1) – 5 = 3.1 + 2 – 5 = 0
Vậy giá trị của biểu thức 3x2 – 2x – 5 tại x = -1 là 0.
*Thay x = 5/3 vào biểu thức ta có:
a)
\(P=\left(x^{14}-9x^{13}\right)-\left(x^{13}-9x^{12}\right)+\left(x^{12}-9x^{11}\right)-...+\left(x^2-9x\right)-\left(x-9\right)+1\)
\(=x^{13}\left(x-9\right)-x^{12}\left(x-9\right)+x^{11}\left(x-9\right)+...+x\left(x-9\right)-\left(x-9\right)+1\)
\(P\left(9\right)=1\)
b)
\(Q=\left(x^{15}-7x^{14}\right)-\left(x^{14}-7x^{13}\right)+\left(x^{13}-7x^{12}\right)-...-\left(x^2-7x\right)+\left(x-7\right)+2\)
\(=x^{14}\left(x-7\right)-x^{13}\left(x-7\right)+x^{12}\left(x-7\right)-...-x\left(x-7\right)+\left(x-7\right)+2\)
\(Q\left(7\right)=2\)
\(3x^2-15x^2+8x^2\)
\(=-4x^2\)
Thay \(x=\dfrac{1}{4}\) vào biểu thức ta được:
\(-4\cdot\left(\dfrac{1}{4}\right)^2=-\dfrac{1}{4}\)
Vậy: ...