Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tích của 14xy314xy3 và −2x2yz2−2x2yz2 là:
14xy3.(−2x2yz2)=−12x3y4z214xy3.(−2x2yz2)=−12x3y4z2
Đơn thức tích có hệ số là −12−12 ; có bậc 9.
b) Tích của −2x2yz−2x2yz và −3xy3z−3xy3z là:
−2x2yz.(−3xy3z)=6x3y4z2−2x2yz.(−3xy3z)=6x3y4z2
Đơn thức có hệ số là 6; có bậc 9.
a) \(\dfrac{1}{4}xy^3.\left(-2\right)x^2yz^2\)
= \(\left[\dfrac{1}{4}.\left(-2\right)\right].\left(x.x^2\right).\left(y^3.y\right).z^2\)
= \(\dfrac{-1}{2}x^3y^4z^2\).
Đơn thức trên có hệ số là \(\dfrac{-1}{2}\) và bậc là 9.
b) \(-2x^2yz.\left(-3\right)xy^3z\)
= \(\left[\left(-2\right).\left(-3\right)\right].\left(x^2.x\right).\left(y.y^3\right).\left(z.z\right)\)
= 6x\(^3y^4z^2\).
Đơn thức trên có hệ số là 6 và bậc là 9.
Hướng dẫn giải:
a) Tích của hai đơn thức 12151215 x4y2 và 5959 xy là 12151215 x4y2 . 5959 xy = 4949 x5 y3;
Đơn thức tích có bậc 8.
b) - 1717 x2y . (-2525 xy4) = 235235 x3y5;
Đơn thức tích có bậc 8.
a) Tích của hai đơn thức \(\dfrac{12}{15}\)x4y2 và \(\dfrac{5}{9}\) xy là \(\dfrac{12}{15}\) x4y2 . \(\dfrac{5}{9}\) xy = \(\dfrac{4}{9}\) x5 y3;
Đơn thức tích có bậc 8.
b) - \(\dfrac{1}{7}\) x2y . (-\(\dfrac{2}{5}\) xy4) = \(\dfrac{2}{35}\) x3y5;
Đơn thức tích có bậc 8.
a) Thay x = \(\sqrt{2}\)vào biểu thức ta có :
\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)
Giá trị của A khi x = \(\sqrt{2}\)là 0
b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)
Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)
Giá trị của B khi x = 3 là 32
d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)
Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)
=> D = 8
e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)
Lại có x + y + z = 0
=> x + y = -z
=> x + z = - y
=> y + z = - x
Khi đó E = \(\frac{-xyz}{xyz}=-1\)
\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)
Hệ số \(\frac{-125}{27}\)
Biến : a8b2x16y7zn + 2
1.
Tại x = -1, có :
2.(-1)2 - 5.(-1) + 2
= 2.1 + 5 + 2
= 9
Tại x = \(\dfrac{1}{2}\), có :
\(2.\left(\dfrac{1}{2}\right)^2-5.\dfrac{1}{2}+2\)
= \(2.\dfrac{1}{4}-2,5+2\)
= 0,5 - 2,5 + 2
= 0
2.
\(\dfrac{1}{2}xy^2.\left(-3xyz\right).2x^2z\)
= -3x4y3z2
- Hệ số : -3
- Bậc : 9
thay x =-1 vào bt ta được
\(2\left(-1\right)^2-5\left(-1\right)+2=2+5+2=9\)
thay x=1/2 vào bt ta được
\(2.\left(\dfrac{1}{2}\right)^2-5.\dfrac{1}{2}+2=\dfrac{1}{2}-\dfrac{5}{2}+\dfrac{4}{2}=0\)