\(12x^2+20x+1\)    biết \(3x^2+5x-2=0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

Ta có : \(12x^2+20x+1=4\left[3x^2+5x-2\right]+9=4\cdot0+9=9\)

Vậy giá trị biểu thức là 9

8 tháng 8 2019

Làm rõ ra hộ mình với bạn ơi

5 tháng 4 2020

1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)

Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)

2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)

Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)

3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)

Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)

4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)

\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)

Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)

1. \(A=x^{15}+3x^{14}+5\)

\(A=x^{14}\left(x+3\right)+5\)

\(A=x^{14}+5\)

2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)

\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)

\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)

\(B=1^{2007}=1\)

3. \(C=21x^4+12x^3-3x^2+24x+15\)

\(C=3x\left(7x^2+4x^2-x+8+5\right)\)

\(C=3x\left(0+5\right)\)

\(C=15x\)

4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)

\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)

\(D=4x.0+2007\)

\(D=2007\)

15 tháng 4 2019

Ta có : 3x2 + 5x - 2 = 0

=> 4.(3x2 + 5x - 2) = 0

=> 12x2 + 20x - 8 = 0

=> 12x2 + 20x = 8 (*)

Thay (*) vào biểu thức 12x2 + 20x + 1 , ta được : 8 + 1 = 9

Vậy giá trị của biểu thức 12x2 + 20x + 1 = 9 khi 3x2 + 5x - 2 = 0

NV
4 tháng 4 2019

a/ \(x^2+y^2=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) \(\Rightarrow A=0\)

b/ Do \(x=19\Rightarrow20=x+1\)

\(B=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+20\)

\(B=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+20\)

\(B=20-x=20-19=1\)

c/ \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)

\(C=\frac{\left(x+y\right)}{y}.\frac{\left(y+z\right)}{z}.\frac{\left(x+z\right)}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)

27 tháng 3 2021

a, Ta có : \(P\left(x\right)=5x^4-3x^2+3x-1-5x^4+4x^2-x-x^2+2\)

\(=2x+1\)

b,*  Thay x = 0 vào biểu thức trên ta có : \(2.0+1=1\)

Vậy nếu x = 0 thì biểu thức nhận giá trị 1 

* Thay x = -1 vào biểu thức trên ta có : \(2\left(-1\right)+1=-2+1=-1\)

Vậy nếu x = -1 thì biểu thức nhận giá trị là -1 

* Thay x = 1/2 vào biểu thức trên ta có : \(2.\frac{1}{2}+1=1+1=2\)

Vậy nếu x = 1/2 thì biểu thức nhận giá trị là 2 

c, Ta có \(P\left(x\right)=0\)hay \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

Ta có \(P\left(x\right)=1\)hay \(2x+1=1\Leftrightarrow x=0\)