Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức:
\(1+2+...+n=\frac{n\left(n+1\right)}{2}\) thì được
\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+2009}\)
\(=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{2009.2010}{2}}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2009.2010}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)=\frac{1004}{1005}\)
thôi, làm luôn nè
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2009}\)
\(=\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+\frac{1}{\left(1+4\right).4:2}+...+\frac{1}{\left(1+2009\right).2009:2}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2009.2010}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}\right)+2.\left(\frac{1}{3}-\frac{1}{4}\right)+2.\left(\frac{1}{4}-\frac{1}{5}\right)+...+2.\left(\frac{1}{2009}-\frac{1}{2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2.\frac{502}{1005}\)
\(=\frac{1004}{1005}\)
[1+(-2)]+[3+(-4)]+..........+[2009+(-2010)]+2001
= (-1) + (-1)+ ...........+ (-1) + 2001
= -1005 +2001
= 996
Gọi C =1 + 2 + 2^2 + ...+2^2008
2C =2.(1 + 2 + 2^2 +...+2^2008)
=2 + 2^2 +...+2^2009
2C-C = ( 2 + 2^2 +...+2^2009) - (1 +2 +2^2 +...+2^2008)
= 2^2009 - 1
Ta có :2^2009 -1 /1-2^2009 = -(1-2^2009) / 1-2^2009 = - 1
Vậy B = - 1
A = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + 2005 + 2006 - 2007 - 2008 + 2009 + 2010 ( có 2010 số )
A = ( 1 + 2 - 3 - 4 ) + ( 5 + 6 - 7 - 8 ) + .... + ( 2005 + 2006 - 2007 - 2008 ) + ( 2009 + 2010 )
A = ( - 4 ) + ( - 4 ) + ... + ( - 4 ) + 4019 ( có 503 số )
A = ( - 4 ) . 502 + 4019
A = - 2008 + 4019
A = 2011
\(A=1+2-3-4+5+6-7-8+...+2005+2006-2007-2008\)\(+2009+2010\)
( Có 2010 số hạng )
\(A=\left(1+2-3-4\right)+.....+\left(2005+2006-2007-2008\right)+2009+2010\)
( Có 502 nhóm )
\(A=\left(-4\right)+\left(-4\right)+......+\left(-4\right)+2009+2010\)
( Có 502 số - 4 )
\(A=-4\cdot502+2009+2010\)
\(A=-2008+2009+2010\)
\(A=1+2010\)
\(A=2011\)
\(=>M=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2009\cdot2010}\)
`M=1/2-1/3+1/3-1/4+1/4-1/5+...+1/2009-1/2010`
`M=1/2-1/2010`
`M=502/1005`
(1+1/2).(1+1/3).(1+1/4).......(1+1/2009)
=3/2 . 4/3 . 5/4......2010/2009
=2010/2
=1005
nhớ **** cho mình nha