K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2018

c.

C=6(xy)^2-6(xy)y^2-(2x)^3+8(xy)^2+5(xy)^2-5(xy).y^2

C=(6+8+5)(xy)^2-(6+5)(xy)^2.y^2 -(2x)^3+8.(xy)^2

x.y=1; 2x=1

C=19-11.4-1+8

C=26-44=30-40-4-4=-10-8=-18

24 tháng 5 2018

a)

<=>A=3x[10x^2-2x+1-2(5x^2-x-2)]=3x(1+4)

=3.5.x

x=15

A=3.5.15=15^2=(4^2-1).15=4.15.4-15=60.4-15

=240-15=225

12 tháng 7 2019

a,\(xy+3x-7y-21\)

\(=x\left(y+3\right)-7\left(y+3\right)\)

\(=\left(y+3\right)\left(x-7\right)\)

12 tháng 7 2019

\(b,2xy-15-6x+5y\)

\(=\left(2xy-6x\right)+\left(-15+5y\right)\)

\(=2x\left(y-3\right)-5\left(3-y\right)\)

\(=2x\left(y-3\right)+5\left(y-3\right)\)

\(=\left(y-3\right)\left(2x+5\right)\)

20 tháng 12 2020

a/ \(A=20x^3-10x^2+5x-20x^3+10x^2+4x=9x\)

Thay x = 15 vào bt A ta có

A = 9 . 15 = 135

b/ \(B=5x^2-20xy-4y^2+2xy=5x^2-4y^2\)

Thay x = -1/5 ; y = - 1/2 vào bt B ta có

\(B=5.\dfrac{1}{25}-4.\dfrac{1}{4}=\dfrac{1}{5}-1=-\dfrac{4}{5}\)

c/ \(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)

\(=9x^2y^2-xy^3-8x^3\)

Thay x = 1/2 ; y = 2 vào bt C ta có

\(C=9.4.\dfrac{1}{4}-\dfrac{1}{2}.8-8.\dfrac{1}{8}=9-4-1=4\)

d/ \(D=6x^2+10x-3x-5+6x^2-3x+8x-2\)

\(=12x^2+12x-3\)

\(\left|x\right|=2\Rightarrow x=\pm2\)

Thay x = 2 vào bt D có

\(D=12.4+12.2-3=69\)

Thay x = - 2 vào bt D ta có

\(D=12.4-12.2-3=21\)

19 tháng 6 2017

a) \(A=3x\left(10x^2-2x+1\right)-6x\left(5x^2-x-2\right)\)

\(=30x^3-6x^2+3x-30x^3+6x^2+12x\)

\(=15x\)

Thay \(x=15\) vào biểu thức A.

Ta có: \(15\cdot15=225\)

Vậy giá trị biểu thức A tại \(x=15\) là 225.

b) \(5x\left(x-4y\right)-4y\left(y-5x\right)\)

\(=5x^2-20xy-4y^2+20xy\)

\(=5x^2-4y^2\)

Thay \(x=-\dfrac{1}{5};y=-\dfrac{1}{2}\) vào biểu thức B.

Ta có: \(5\cdot\left(-\dfrac{1}{5}\right)^2-4\cdot\left(-\dfrac{1}{2}\right)^2=-\dfrac{4}{5}\)

Vậy giá trị biểu thức B tại \(x=-\dfrac{1}{5};y=-\dfrac{1}{2}\)\(-\dfrac{4}{5}\)

23 tháng 12 2019

a) \(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)

\(A=20x^3-10x^2+5x-20x^3+10x^2+4x\)

\(A=9x\)

Thay x = 15 vào, ta có: 

\(A=9.15=135\)

b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)\)

\(B=5x^2-20xy-4y^2+20xy\)

\(B=5x^2-4y\)

Thay \(x=-\frac{1}{5};y=-\frac{1}{2}\) vào, ta có: 

\(B=5.\left(-\frac{1}{5}\right)^2-4.\left(-\frac{1}{2}\right)=\frac{11}{5}\)

c) \(C=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)-5y^2\left(x^2-xy\right)\)

\(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)

\(C=9x^2y^2-xy^3-8x^3\)

Thay \(x=\frac{1}{2};y=2\) vào, ta có:

\(C=9.\left(\frac{1}{2}\right)^2.2^2-\frac{1}{2}.2^3-8.\left(\frac{1}{2}\right)^3=4\)

d) \(D=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)

\(D=6x^2-3x+10x-5+12x^2+8x-3x-2\)

\(D=18x^2+12x-7\)

Ta có: \(\left|2\right|=\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)

+) Với x = -2

\(D=18.\left(-2\right)^2+12.\left(-2\right)-7=41\)

+) Với x = 2

\(D=18.2^2+12.2-7=89\)

10 tháng 7 2018

a ) 

\(A=x\left(x^3+y\right)-x^2\left(x^2-y\right)-x^2\left(y-1\right)\)

\(\Rightarrow A=x^4+xy-x^4+x^2y-x^2y+x^2\)

\(\Rightarrow A=x^2+xy=x\left(x+y\right)\)

Thay \(x=-10;y=5\)vào A , ta được : 

\(A=-10\left(-10+5\right)\)

\(=-10.-5=50\)

Vậy \(A=50\)

10 tháng 7 2018

a) A = x(x3 + y) - x2(x2 - y) - x2(y - 1)

= x4 + xy - x4 + x2y - x2y + x2

= xy + x2

Thay x = –10 và y = 5 vào (1), ta được:

A = -10.5 + (-10)2 = -50 + 100 = 50

Vậy giá trị của biểu thức A tại x = –10 và y = 5 là 50.

b)Ta có: 5x3 – 3x2 + 10x – 6 = (5x3 + 10x )+ ( -3x2– 6)

= 5x(x2 + 2) – 3(x2 + 2) = (x2 + 2)(5x – 3)

Vậy (x2 + 2)(5x – 3) = 0 ⇒ 5x – 3 = 0 (vì x2 + 2 ≥ 0, với mọi x)

⇒x = 3/5

c)Ta có: x2 + y2 – 2x + 4y + 5 = (x2 – 2x + 1) + (y2 + 4y + 4)

= (x – 1)2 + (y + 2)2

Vậy (x – 1)+ (y + 2)2 = 0 ⇒ x – 1 = 0 hay y + 2 = 0

⇒ x = 1 hoặc y = -2

17 tháng 7 2019

a) =2x^3-10x^2-2x+3x^2-x

=2x^3-7x^2-3x

17 tháng 7 2019

b) -10x^4y^2z^2+35x^3y^2z^2+4x^4y^2z^2+4x^3y^2z^2

=-6x^4y^2z^2+39x^3y^2z^2