Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt tử là A, ta có:
2A=2(1+2+22+...+22015)
2A=2+22+...+22016
2A-A=(2+22+...+22016)-(1+2+22+...+22015)
A=22016-1
Thay A vào tử của B ta được:\(B=\frac{2^{2016}-1}{1-2^{2016}}=-1\)
Đặt :
Sáng = 1+2+22+23+...+22015
2.Sáng = 21+22+23+...+22016
=> 2. Sáng - Sáng = Sáng = (21+22+23+...+22016) - ( 1+21+22+23+...+22015)
= 22016-1
Thay Sáng vào tử số ta đc :
\(\frac{2^{2016}-1}{1-2^{2016}}\)
Xong
\(A=\left(\frac{1}{2016}+1\right)+\left(\frac{2}{2015}+1\right)+...+\left(\frac{2015}{2}+1\right)+1\)
= \(\frac{2017}{2016}+\frac{2017}{2015}+\frac{2017}{2014}+...\frac{2017}{2}+\frac{2017}{2017}\)
= \(2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}\)
= 2017
Chúc bạn học giỏi!
\(P=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+....+\frac{1}{2016}.\left(1+2+3+...+2016\right)\)
\(P=1+\frac{1}{2}.3+\frac{1}{3}.6+\frac{1}{4}.10+....+\frac{1}{2016}.2033136\)
\(P=1+\frac{3}{2}+4+\frac{5}{2}+....+\frac{2017}{2}\)
\(P=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+....+\frac{2017}{2}\)
\(P=\frac{2+3+4+5+....+2017}{2}=\frac{2035152}{2}=1017576\)
3n+2/ n-1 =3n-3+5/n-1=3 + 5/ n-1
Để phân số a nguyên
=>n-1 thuộc Ư(5)
=>n-1 thuoc {-5 ;-1 ;1 ;5 }
n thuộc {-4 ; 0 :2 :6}
Chú ý : Vì là lớp 6 nên giải zậy chứ lớp 9 là cách lm này là k chuẩn........( vì n không thuộc Z)
b,2B=1=1/2 +......+1/22015
2B-B=(1 +1/2 +.....+1/22015) - (1/2 +1/22+......+1/22016)
B=1 -1/22016
Vi 1-1/22016<1
=>B<1
a)
\(A=\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
Để A nguyên thì 5 chia hết cho n-1
\(\Rightarrow n-1\in U\left(5\right)=+-1;+-5\)
lập bảng nhé!
b)
\(B=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)
\(\Rightarrow\frac{1}{2}B=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\)
\(\Rightarrow B=\left(B-\frac{1}{2}B\right).2=\left(\frac{1}{2}-\frac{1}{2^{2017}}\right).2\)
\(\Rightarrow B=1-\frac{1}{2^{2016}}< 1\)
Bài 1:
ta có: \(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)
\(B=\frac{4^2-2^2}{2^2.4^2}+\frac{6^2-4^2}{4^2.6^2}+...+\frac{98^2-96^2}{96^2.98^2}+\frac{100^2-98^2}{98^2.100^2}\)
\(B=\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{6^2}+...+\frac{1}{96^2}-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)
\(B=\frac{1}{2^2}-\frac{1}{100^2}\)
\(B=\frac{1}{4}-\frac{1}{100^2}< \frac{1}{4}\)
\(\Rightarrow B< \frac{1}{4}\)
Bài 2:
ta có: \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Rightarrow A>B\)
Học tốt nhé bn !!
Đặt A= 1+2+22+23+...+22015
<=> 2A=2+22+23+...+22016
2A-A=(2+22+23+...+22016)-(1+2+22+...+22015)
<=> A=22016-1
B =\(\frac{1+2+2^2+2^3+...+2^{2015}}{1-2^{2016}}\)
=\(\frac{2^{2016}-1}{1-2^{2016}}\)
=\(\frac{-\left(1-2^{2016}\right)}{1-2^{2016}}\)
=-1
Vậy B=-1
Phạm Công Thành giúp mik câu hỏi của mik vs !!!!!!!!