Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi S có n số hạng sao cho S = 1+ 2+ 3 + ...+ n = aaa ( a là chữ số)
=> (n + 1).n : 2 = a.111
=> n(n + 1) = a.222
=> n(n + 1) = a.2.3.37
a là chữ số mà n; n + 1 là hai số tự nhiên liên tiếp nên a = 6
=> n(n + 1) = 36.37
=> n = 36
Vậy cần 36 số hạng
cho mình nha
a) \(\left(x-11\right)+\frac{3x}{x-11}=3+\frac{33}{x-11}\)
\(\Leftrightarrow x+\frac{3x}{x-11}-\frac{33}{x-11}=14\)
\(\Leftrightarrow x^2-11x+3x-33=14x-154\)
\(\Leftrightarrow x^2-22x+121=0\)
\(\Leftrightarrow\left(x-11\right)^2=0\Leftrightarrow x=11\)
Vậy .......
b) \(\frac{7-2x}{x-1}=\frac{1-4x}{x+2}\Leftrightarrow\left(7-2x\right)\left(x+2\right)=\left(1-4x\right)\left(x-1\right)\)
\(\Leftrightarrow7x-2x^2+14-4x=x-4x^2-1+4x\)
\(\Leftrightarrow2x^2=-15\)(vô lí)
Vậy pt vô nghiệm
c) \(\frac{3-2x}{x+1}=2+\frac{1-4x}{x-2}\)
\(\Leftrightarrow\left(3-2x\right)\left(x-2\right)=2\left(x+1\right)\left(x-2\right)+\left(1-4x\right)\left(x+1\right)\)
\(\Leftrightarrow3x-2x^2-6x+4x=2x^2+2x-4x-4+x-4x^2+1-4x\)
\(\Leftrightarrow6x=-3\Leftrightarrow x=-\frac{1}{2}\)
Vậy.........
(gửi trước 3 câu)
d) \(\frac{109x-4}{111x+1}-1=0\Leftrightarrow109x-4=111x+1\Leftrightarrow2x=-5\Leftrightarrow x=-\frac{5}{2}\)
Vậy x=-5/2
e) \(\frac{x^2-7}{x}=x-\frac{1}{2}\Leftrightarrow\frac{x^2-7}{x}-\frac{x^2}{x}=-\frac{1}{2}\Leftrightarrow-\frac{7}{x}=\frac{1}{2}\Leftrightarrow x=-14\)
f) \(\frac{x+1}{x+2}=3\Leftrightarrow x+1=3x+6\Leftrightarrow2x=7\Leftrightarrow x=\frac{7}{2}\)
a) \(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)
\(\Leftrightarrow\left(\frac{x+1}{94}+1\right)+\left(\frac{x+2}{93}+1\right)+\left(\frac{x+3}{92}+1\right)=\left(\frac{x+4}{91}+1\right)+\left(\frac{x+5}{90}+1\right)+\left(\frac{x+6}{89}+1\right)\)
\(\Leftrightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}-\frac{x+95}{91}-\frac{x+95}{90}-\frac{x+95}{89}=0\)
\(\Leftrightarrow\) \(\left(x+95\right)\left(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\right)=0\)
Vì \(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\ne0\)
\(\Rightarrow x+95=0\)
\(\Leftrightarrow x=-95\)
Vậy phương trình có một nghiệm x = -95
b) \(\frac{x-1}{59}+\frac{x-2}{58}+\frac{x-3}{57}=\frac{x-4}{56}+\frac{x-5}{55}+\frac{x-6}{54}\)
\(\Leftrightarrow\left(\frac{x-1}{59}-1\right)+\left(\frac{x-2}{58}-1\right)+\left(\frac{x-3}{57}-1\right)=\left(\frac{x-4}{56}-1\right)+\left(\frac{x-5}{55}-1\right)+\left(\frac{x-6}{54}-1\right)\)
\(\Leftrightarrow\frac{x-60}{59}+\frac{x-60}{58}+\frac{x-60}{57}-\frac{x-60}{56}-\frac{x-60}{55}-\frac{x-60}{54}=0\)
\(\Leftrightarrow\left(x-60\right)\left(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\right)=0\)
Vì \(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\ne0\)
\(\Rightarrow x-60=0\)
\(\Leftrightarrow x=60\)
Vậy phương trình có một nghiệm x = 60
a) \(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)
\(\Rightarrow\left(\frac{x+1}{94}+1\right)+\left(\frac{x+2}{93}+1\right)+\left(\frac{x+3}{92}+1\right)=\left(\frac{x+4}{91}+1\right)+\left(\frac{x+5}{90}+1\right)+\left(\frac{x+6}{89}+1\right)\)
\(\Rightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}=\frac{x+95}{91}+\frac{x+95}{90}+\frac{x+95}{89}\)
\(\Rightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}-\frac{x+95}{91}-\frac{x+95}{90}-\frac{x+95}{89}=0\)
\(\Rightarrow\left(x+95\right)\left(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\right)=0\)
Mà \(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\ne0\)
\(\Rightarrow x+95=0\)
\(\Rightarrow x=-95\)
Vậy x = -95
b) \(\frac{x-1}{59}+\frac{x-2}{58}+\frac{x-3}{57}=\frac{x-4}{56}+\frac{x-5}{55}+\frac{x-6}{54}\)
\(\Rightarrow\left(\frac{x-1}{59}-1\right)+\left(\frac{x-2}{58}-1\right)+\left(\frac{x-3}{57}-1\right)=\left(\frac{x-4}{56}-1\right)+\left(\frac{x-5}{55}-1\right)+\left(\frac{x-6}{54}-1\right)\)
\(\Rightarrow\frac{x-60}{59}+\frac{x-60}{58}+\frac{x-60}{57}-\frac{x-60}{56}-\frac{x-5}{55}-\frac{x-6}{54}=0\)
\(\Rightarrow\left(x-60\right)\left(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\right)=0\)
Mà \(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\ne0\)
\(\Rightarrow x-60=0\)
\(\Rightarrow x=60\)
Vậy x = 60
Xin lỗi mình làm hơi tắt nha !!!Còn 1 cách nữa ,nếu bạn muốn thì nói với mình nha !!
Ta có : \(\frac{x-1}{59}+\frac{x-2}{58}+\frac{x-3}{57}=\frac{x-4}{56}+\frac{x-5}{55}+\frac{x-6}{54}\)
\(\Leftrightarrow\frac{x}{59}+\frac{x}{58}+\frac{x}{57}-\frac{x}{56}-\frac{x}{55}-\frac{x}{54}=\frac{1}{59}+\frac{2}{58}+\frac{3}{57}-\frac{4}{56}-\frac{5}{55}-\frac{6}{54}\)
<=> x = 60
Vậy x = 60
Bạn kiểm tra lại đề nhé. Chỗ
\(.....=\frac{x-4}{56}+\frac{x-5}{56}+\frac{x-6}{54}\)
(x -1)/59 -1 +(x-2)/58 -1 +(x-3)/57 -1 = (x-3)/56 -1 +(x-4)/55 -1 +(x-5)/54 -1
<=> (x-60)/59 +(x-60)/58 + (X-60)/57 -(x-60)/56 - (X-60)/55 -(X-60)/54 =0
<=> (x-60).(1/59 +1/58 +1/57 -1/56 -1/55 - 1/54)=0
vì 1/59 +1/58 +1/57 -1/56 -1/55 -1/54 <0
nên x-60 =0 <=> x=60
đề bài của bạn bi sai vì vế trái không thể bằng vế phải nếu đề đúng thì phải là :
(x-1)/59 +(x-2)/58 +(x-3)/57 =(x-4)/56 +(x-5)/55 +(x-6)/54
khí đó bạn giải cách như trên ,chúc bạn học toán tốt
a) 3x - 2(5 + 2x) =45 - 2x
=> 3x - 10 - 4x = 45 - 2x
=> 3x - 4x + 2x = 45 + 10
=> x = 55
b) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
=> \(\frac{x-3}{5}=\frac{2x+17}{3}\)
=> 5(2x + 17) = 3(x - 3)
=> 10x + 85 = 3x - 9
=> 7x = -94
=> x = -94/7
c) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{4x-33}{7}\)
=> \(\frac{10x-6}{12}-\frac{21x-3}{12}=\frac{4x-33}{7}\)
=> \(\frac{-11x-3}{12}=\frac{4x-33}{7}\)
=> (-11x - 3).7 = (4x - 33).12
= -77x - 21 = 48x - 396
=> x = 3
d) (x - 1)(5x + 3) = (3x - 8)(x - 1)
=> (x - 1)(5x + 3) - (3x - 8)(x -1) = 0
=> (x - 1)(2x + 11) = 0
=> \(\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5,5\end{cases}}\)
e) (x - 1)(x2 + 5x - 2) - (x3 - 1) = 0
=> (x - 1)(x2 + 5x - 2) - (x - 1)(x2 + x + 1) = 0
=> (x - 1)(4x - 3) = 0
=> \(\orbr{\begin{cases}x-1=0\\4x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=0,75\end{cases}}\)
f) \(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)
=> \(\left(\frac{x-17}{33}-1\right)+\left(\frac{x-21}{29}-1\right)+\left(\frac{x}{25}-2\right)=0\)
=> \(\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)
=> \(\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\)
=> x - 50 = 0 (Vì \(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\ne0\))
=> x = 50
b, \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
\(\Leftrightarrow\frac{x-3}{5}=\frac{17+2x}{3}\Leftrightarrow3x-9=85+10x\)
\(\Leftrightarrow-7x=94\Leftrightarrow x=-\frac{94}{7}\)
f, sửa : \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\)
\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\ne0\right)=0\)
\(\Leftrightarrow x=-66\)
\(a,\frac{5}{x^2+1}\in Z\Leftrightarrow\left(x^2+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x^2\in\left\{-2;0;-6;4\right\}\)
Mà \(x^2\) là số chính phương \(\Rightarrow x^2=0;4\)
\(\Rightarrow x=0;2\)
Vậy x = 2 thì phương trình có giá trị nguyên
\(b,\frac{x^2-59}{x+8}=\frac{x^2-64+5}{x+8}=\frac{\left(x-8\right)\left(x+8\right)+5}{x+8}=\left(x-8\right)+\frac{5}{x+8}\)
Vì \(x\inℤ\Rightarrow\left(x-8\right)\in Z\)
Do đó : Phương trình có giá trị nguyên khi \(\frac{5}{x+8}\inℤ\)
\(\Leftrightarrow5⋮x+8\) ( vì \(x+8\in Z\) )
\(\Leftrightarrow x+8\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x=-9;-7;-13;-3\)
Vậy với x = -9;-7;-13;-3 thì phương trình có giá trị nguyên
Đặt \(a=\frac{1}{33}\), \(b=\frac{1}{59}\)
Có B= \(\left(2+\frac{1}{33}\right).\frac{1}{59}-3.\frac{1}{33}.\left(3+\frac{58}{59}\right)-4.\frac{1}{33}\frac{1}{59}+4.\frac{1}{33}.3\)
= \(\left(2+a\right)b-3a\left(3+1-\frac{1}{59}\right)-4ab+4.a.3\)
= \(2b+ab-3a\left(4-b\right)-4ab+12a\)
= \(2b+ab-12a+3ab-4ab+12a\)
= \(2b=\frac{2}{59}\)
Vậy B= \(\frac{2}{59}\)