K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

Ta có : \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow x=y=z\)

Khi đó : \(3x^{2018}=27^{673}=\left(3^3\right)^{673}=3^{2019}\)

\(\Leftrightarrow x^{2018}=3^{2018}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=z=3\\x=y=z=-3\end{cases}}\)

Đến đây tự tính A nha!

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

Lời giải:
Đặt \(\frac{x}{a}=m; \frac{y}{b}=n; \frac{z}{c}=p\). Khi đó:

ĐKĐB $\Leftrightarrow \frac{a^2m^2+b^2n^2+c^2p^2}{a^2+b^2+c^2}=m^2+n^2+p^2$

$\Rightarrow a^2m^2+b^2n^2+c^2p^2=(a^2+b^2+c^2)(m^2+n^2+p^2)$

$\Leftrightarrow a^2n^2+a^2p^2+b^2m^2+b^2p^2+c^2m^2+c^2n^2=0$
$\Rightarrow an=ap=bm=bp=cm=cn=0$

Vì $a,b,c\neq 0$ nên $m=n=p=0$

$\Rightarrow x=y=z=0$

Khi đó:

$\frac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=0$

$\frac{x^{2019}}{a^{2019}}=\frac{y^{2019}}{b^{2019}}=\frac{z^{2019}}{c^{2019}}=0$

$\Rightarrow$ đpcm

 

23 tháng 12 2020

ĐKXĐ: \(\left\{{}\begin{matrix}a\ne0\\b\ne0\\c\ne0\end{matrix}\right.\)Ta có: \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)\cdot\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\left(a^2+b^2+c^2\right)\cdot\left(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\right)\)

\(\Leftrightarrow x^2+y^2+z^2=x^2+\dfrac{x^2\cdot\left(b^2+c^2\right)}{a^2}+y^2+\dfrac{y^2\left(a^2+c^2\right)}{b^2}+z^2+\dfrac{z^2\cdot\left(a^2+b^2\right)}{c^2}\)

\(\Leftrightarrow x^2\cdot\dfrac{b^2+c^2}{a^2}+y^2\cdot\dfrac{a^2+c^2}{b^2}+z^2\cdot\dfrac{a^2+b^2}{c^2}=0\)(1)

Vì (1) luôn không âm mà a,b,c≠0

nên x=y=z=0

\(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{0^{2019}+0^{2019}+0^{2019}}{a^{2019}+b^{2019}+c^{2019}}=0\)

mà \(\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}=\dfrac{0^{2019}}{a^{2019}}+\dfrac{0^{2019}}{b^{2019}}+\dfrac{0^{2019}}{c^{2019}}=0\)

nên \(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}\)

14 tháng 11 2019

Violympic toán 8

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)=> \(\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)

=> (x+y+z)(xy+yz+zx) = xyz

=> \(x^2y+xy^2+y^2z+yz^2+zx^2+z^2x+2xyz=0\)

=> (x+y)(y+z)(z+x) = 0

=> \(\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

TH1: x = -y

=> \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{\left(-y\right)^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{z^{2019}}\)

=> \(\frac{1}{x^{2019}+y^{2019}+z^{2019}}=\frac{1}{\left(-y\right)^{2019}+y^{2019}+z^{2019}}=\frac{1}{z^{2019}}\)

=> ĐPCM

Tương tự với TH2 và TH3