Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3x - 1)3 = 125
(3x - 1)3 = 53
=>3x - 1 = 5
3x = 5 + 1
3x = 6
x = 6 : 3
x = 2
A = 1+5+52+53+...+597+598
A = (1 + 5 + 52) + (53 + 54 + 55) + ... + (596 + 597 + 598)
A = 1(1 + 5 + 52) + 53(1 + 5 + 52) + ... + 596(1 + 5 + 52)
A = 1.31 + 53.31 + ... + 596.31
A = 31(1 + 53 + ... + 596)
Vì 31(1 + 53 + ... + 596) \(⋮\)nên A \(⋮\)31
Vậy A \(⋮\)31
a, \(\left(3x-1\right)^3=125\Leftrightarrow\left(3x-1\right)^3=5^3\)
\(\Rightarrow3x-1=5\Rightarrow3x=5+1\Rightarrow3x=6\Rightarrow x=6\div3=2\)
Vậy x = 2
b, Xét dãy số mũ : 0;1;2;3;...;97;98
Số số hạng của dãy số trên là :
\(\left(98-0\right)\div1+1=99\) ( số )
Ta được số nhóm là :
\(99\div3=33\) ( nhóm )
Ta có : \(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{96}+5^{97}+5^{98}\right)\) (33 nhóm )
\(A=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{96}\left(1+5+5^2\right)\)
\(A=1.31+5^3.31+...+5^{96}.31=\left(1+5^3+...+5^{96}\right).31\)
Mà : \(31⋮31;1+5^3+...+5^{96}\in N\Rightarrow A⋮31\) (đpcm)
a) 23 . 22 . 24 = 23 + 2 + 4 = 29;
b) 102 . 103 . 105 = 102 + 3 + 5 = 1010
c) x . x5 = x1 + 5 = x6
d) a3 . a2 . a5 = a3 + 2 + 5 = a10
4,Tìm a, b ∈N, biết:
a,10a+168=b2
b,100a+63=b2
c,2a+124=5b
d,2a+80=3b
Giải:
a) xét \(a=0\)
\(\Rightarrow10^a+168=1+168=169=13^2\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=13\end{cases}}\)
xét \(a\ne0\)
=>10a có tận cùng bằng 0
Mà 10a+168 có tận cùng bằng 8 không phải số chính phương ( các số chính phương chỉ có thể tận cùng là:0;1;4;5;6;9 )
=>không có b
vậy \(\hept{\begin{cases}a=0\\b=13\end{cases}}\)
b)Chứng minh tương tự câu a)
c) \(5^b\)là số lẻ với b là số tự nhiên và tận cùng là 5
\(\Rightarrow2^a+124\)cũng là số lẻ và tận cùng là 5
Mà \(2^a+124\) là số lẻ khi và chỉ khi a=0
ta có :
2^0 + 124 = 5^b
=> 125 = 5^b
=> 5^3 = 5^b
=> b = 3
Vậy a = 0 ; b =3
d)Chứng minh tương tự như 2 câu mẫu trên
3,Cho B=34n+3+2013
Chứng minh rằng B⋮10 với mọi n∈N
Giải:
Ta có :
34n+3+2013
=(34)n+27+2013
=81n+2040
Phần sau dễ rồi ,mk nghĩ bạn có thể giải đc
\(A,\left(a^6\right)^4.a^{12}=a^{24}.a^{12}=a^{36}\)
\(B,5^6:5^3+3^3.3^2=5^3+3^5=125+243=368\)
Tìm X
\(A,\left(x-1\right)^3=125=5^3\)
\(x-1=5\)
\(\Rightarrow x=6\)
\(B,720:\left[41-\left(2x-5\right)\right]=2^3.5=40\)
\(\Leftrightarrow41-\left(2x-5\right)=\frac{720}{40}=18\)
\(\Leftrightarrow2x-5=23\)
\(\Leftrightarrow x=\frac{28}{2}=14\)
2, \(=>9A=3^3+3^5+3^7+......+3^{39}+3^{41}\)
\(=>9A-A=3^{41}-3\)
\(=>A=\dfrac{3^{41}-3}{8}\)
CHÚC BẠN HỌC TỐT........
\(1+a^2+a^4+a^6+.....+a^{2n}\)
\(\Rightarrow a^2.S1=a^2+a^4+a^6+a^8+.....+a^{2\left(1+n\right)}\)
\(\Rightarrow a^2.S1-S1=\left(a^2+a^4+....+2^{2\left(1+n\right)}\right)-\left(1+a^2+a^4+....+2^{2n}\right)\)
\(\Rightarrow S1\left(a-1\right)\left(a+1\right)=a^{2\left(1+n\right)}-1\)
\(\Rightarrow S1=\frac{a^{2\left(1+n\right)}-1}{\left(a-1\right)\left(a+1\right)}\)
Ta có: \(\frac{1}{1^2}=1\)
\(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
...
\(\frac{1}{50^2}<\frac{1}{49.50}\)
=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
=> A < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
=> A < 1 - 1/50 = 49/50
Mà 49/50 < 50/50 = 1 < 2
=> A < 2 (Đpcm).
\(G=1+a+a^2+a^3+a^4+a^5+...+a^n\)
\(aG=a+a^2+a^3+a^4+a^5+a^6+...+a^{n+1}\)
\(aG-G=\left(a+a^2+a^3+...+a^{n+1}\right)-\left(1+a+a^2+...+a^n\right)\)
\(G\left(a-1\right)=a^{n+1}-1\)
\(G=\frac{a^{n+1}-1}{a-1}\)