\(\frac{9^{15}\cdot8^{12}}{3^{30}\cdot4^{17}}\)
  • K
    Khách

    Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

    31 tháng 12 2016

    c )

    \(1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}}=1+\frac{1}{1+\frac{1}{1+\frac{1}{\frac{3}{2}}}}=1+\frac{1}{1+\frac{1}{1+\frac{5}{3}}}=1+\frac{1}{1+\frac{1}{\frac{8}{3}}}=1+\frac{1}{\frac{11}{8}}=\frac{19}{11}\)

    11 tháng 8 2017

    a) \(\frac{-77}{143}+\frac{65}{143}-\frac{66}{143}+\frac{7}{22}\)

    \(\frac{-78}{143}+\frac{7}{22}\)\(\frac{-6}{11}+\frac{7}{22}\)\(\frac{-12}{22}+\frac{7}{22}\)

    \(\frac{-5}{22}\)

    b) \(\frac{-4}{5}-\frac{20}{170}+\frac{51}{170}+\frac{150}{170}\)\(\frac{-4}{5}-\frac{221}{170}\)

    \(\frac{-4}{5}-\frac{13}{10}\)\(\frac{-8}{10}-\frac{13}{10}\)=\(\frac{-21}{10}\)

    26 tháng 6 2017

    câu 1=0

    câu 2=3.

    10 tháng 11 2016

    Bài 1:

    \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

    Ta thấy:

    \(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

    \(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

    \(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

    \(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

    \(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

    \(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

    \(\Rightarrow10x+\frac{10}{11}=0\)

    \(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

     

     

    10 tháng 11 2016

    Bài 2:

    Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

    \(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

    \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

    \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

    \(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

    \(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

    \(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

    25 tháng 11 2016

    Ta thấy các phân số của tổng S khi quy đồng mẫu số chứa lũy thừa của 2 với số mũ lớn nhất là 24

    Như vậy, khi quy đồng mẫu số, các phân số của S đều có tử chẵn, chỉ có phân số \(\frac{1}{16}\) có tử lẻ

    Do đó S có tử lẻ mẫu chẵn, không là số tự nhiên (đpcm)

    25 tháng 11 2016

    help me every body! Thanks