Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(T=\frac{9^{14}\times25^6\times8^7}{18^{12}\times625^3\times24^3}\)
\(=\frac{\left(3^2\right)^{14}\times25^6\times\left(2^3\right)^7}{\left(2\times3^2\right)^{12}\times\left(25^2\right)^3\times\left(3\times2^3\right)^3}\)
\(=\frac{3^{28}\times25^6\times2^{21}}{2^{12}\times3^{24}\times25^6\times3^3\times2^9}\)
\(=\frac{3^{28}\times25^6\times2^{21}}{\left(2^{12}\times2^9\right)\times\left(3^{24}\times3^3\right)\times25^6}\)
\(=\frac{3^{28}\times25^6\times2^{21}}{2^{21}\times3^{27}\times25^6}=3\)
b) \(A=\frac{5\times4^{15}\times9^9-4\times3^{20}\times8^9}{5\times2^9\times6^{19}-7\times2^{29}\times27^6}\)
\(=\frac{5\times\left(2^2\right)^{15}\times\left(3^2\right)^9-2^2\times3^{20}\times\left(2^3\right)^9}{5\times2^9\times\left(2\times3\right)^{19}-7\times2^{29}\times\left(3^3\right)^6}\)
\(=\frac{5\times2^{30}\times3^{18}-2^2\times3^{20}\times2^{27}}{5\times2^9\times2^{19}\times3^{19}-7\times2^{29}\times3^{18}}\)
\(=\frac{5\times2^{30}\times3^{18}-2^{29}\times3^{20}}{5\times2^{28}\times3^{19}-7\times2^{29}\times3^{18}}\)
\(=\frac{2^{29}\times3^{18}\times\left(5\times2-3^2\right)}{2^{28}\times3^{18}\times\left(5\times3-7\times2\right)}\)
\(=\frac{2\times\left(10-9\right)}{15-14}=\frac{2\times1}{1}=2\)
1)
a) \(\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}=\frac{3^{28}.5^{10}.2^{21}}{2^{21}.3^{24}.5^{12}.3^3.2^9}=\frac{3}{5^2}=\frac{3}{25}\)
Bài 2:
\(\frac{abab}{cdcd}=\frac{ab.101}{cd.101}=\frac{ab}{cd};\frac{ababab}{cdcdcd}=\frac{ab.10101}{cd.10101}=\frac{ab}{cd}\)
Vậy \(\frac{ab}{cd}=\frac{abab}{cdcd}=\frac{ababab}{cdcdcd}\)
Cho e hỏi cái này. Ở câu 1 ý, cuối đề là \(-\frac{1}{7}\) sao xuống dưới phải đổi thành -1 thế ạ ? E chưa hiểu lắm :<
\(B=\frac{18\times123+9\times4567\times2+3\times5310\times6}{1+4+7+10+...+55+58-410}.\)
\(B=\frac{18\times123+9\times2\times4567+3\times6\times5310}{\left(1+4+7+10+....+55+58\right)-410}\)
\(B=\frac{18\times123+18\times4567+18\times5310}{\left(1+4+7+10+......+55+58\right)-410}\)
\(B=\frac{18\times\left(123+4567+5310\right)}{\left(1+4+7+10+....+55+58\right)-410}\)
\(B=\frac{18\times10000}{\left(1+4+7+10+....+55+58\right)-410}\)
Ta xét : 1 + 4 + 7 + 10 + .... + 55 + 58
Ta có : 4 - 1 = 3
7 - 4 = 3
10 - 4 = 3
................
58 - 55 = 3
Vậy khoảng cách giữa 2 số liền nhau trong dãy số trên hơn kém nhau 3 đơn vị
Dãy số trên có tất cả số số hạng là :
( 58 - 1 ) : 3 + 1 = 20 ( số )
tổng của dãy số trên là :
( 58 + 1 ) x 20 : 2 = 590
Thay vào ta có :
\(B=\frac{18\times10000}{590-410}\)
\(B=\frac{180000}{180}\)
\(B=1000\)
\(\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}\)
\(=\frac{\left(3^2\right)^{14}.\left(5^2\right)^5.\left(2^3\right)^7}{2^{12}.\left(3^2\right)^{12}.\left(5^4\right)^3.3^3.\left(2^3\right)^3}\)
\(=\frac{3^{28}.5^{10}.2^{21}}{2^{12}.3^{24}.5^{12}.3^3.2^9}\)
\(=\frac{3^{28}.5^{10}.2^{21}}{2^{21}.3^{27}.5^{12}}\)
\(=\frac{3}{5^2}\)
\(=\frac{3}{25}\)
Ta có: \(\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}=\frac{\left(3^2\right)^{14}.\left(5^2\right)^5.\left(2^3\right)^7}{\left(2.3^2\right)^{12}.\left(5^4\right)^3.\left(2^3.3\right)^3}\)\(=\frac{3^{28}.5^{10}.2^{21}}{2^{21}.3^{27}.5^{12}}=\frac{3}{5^2}=\frac{3}{25}\)