![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\left(\frac{-2}{3}+\frac{4}{15}\right)^3=\left(\frac{-10+4}{15}\right)^3=\frac{-6^3}{15}=\frac{-8}{125}\)
\(b.\left(\frac{3}{21}-\frac{2}{7}\right)^2=\left(\frac{3}{21}-\frac{6}{21}\right)^2=\frac{-1}{7}^2=\frac{-1}{49}\)
\(d.3-\left(-3.15\right)^0+\left(0.5\right)^2:2=3-1+0.25=2+0.25=2.25\)
\(e.81-3^2:\left(0.375\right)^2=81-9:0.140625=81-64=17\)
- a) =\(\left(\frac{-10}{15}+\frac{4}{15}\right)^3\)=\(\left(\frac{-6}{15}\right)^3\) = \(\left(\frac{-2}{5}\right)^3\) =\(\frac{-8}{125}\)
b) \(=\left(\frac{3}{27}-\frac{6}{21}\right)^2=\left(\frac{-3}{21}\right)^2=\left(\frac{-1}{7}\right)^2=\frac{1}{49}\)
d) \(=3-1+1:2=2+\frac{1}{2}=\frac{5}{2}\)
e) \(=81-9:\left(\frac{3}{8}\right)^2=72:\frac{9}{64}=72.\frac{64}{9}=512\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. sai dấu nhé
2.a, \(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(3^2.5\right)^{10}.5^{20}}{\left(5^2.3\right)^{15}}=\frac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5=243\)
b, \(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(\frac{4}{5}\right)^5}{\left(\frac{2}{5}\right)^6}=\frac{\left(\frac{2}{5}\cdot2\right)^5}{\left(\frac{2}{5}\right)^6}=\frac{\left(\frac{2}{5}\right)^5\cdot2^5}{\left(\frac{2}{5}\right)^5\cdot\frac{2}{5}}=2^5\div\frac{2}{5}=32\cdot\frac{5}{2}=80\)
c, \(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}=\frac{2^{15}.3^2}{2^{15}}=3^2=9\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M=\frac{5}{2\cdot7}+\frac{4}{7\cdot11}+\frac{3}{11\cdot14}+\frac{1}{14\cdot15}+\frac{13}{15\cdot28}\)
\(M=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{15}-\frac{1}{28}\)
\(M=\frac{1}{2}-\frac{1}{28}\)
\(M=\frac{13}{28}\)
\(=\frac{7^2.3^3-3^2.5^2.7+7.3^4}{3.3^2.5^2-2^3.5^3}\)\(=\frac{7.3^2\left(7.3-5^2+3^2\right)}{5^2\left(3^3-2^3.5\right)}\)\(=\frac{7.3^2.5}{5^2.\left(-13\right)}=\frac{7.3^2}{5.\left(-13\right)}=\frac{63}{-65}\)