\(\frac{3}{1.2.2}\)\(+\frac{4}{2.3.2^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn ấn vào đúng 0 sẽ ra đáp án, mình giải bài này rồi

26 tháng 1 2016

nhưng cách giải cơ. giúp mình đi

4 tháng 12 2018

ta có

=\(\frac{1!}{1!2}+\frac{2!2}{2!3!}+\frac{3!3}{3!4!}+...+\frac{6!6}{n!\left(n+1\right)!}=\frac{5039}{5040}->n=6\)

12 tháng 3 2020

\(a.\frac{7x-3}{x-1}=\frac{2}{3}\\\Leftrightarrow \frac{3\left(7x-3\right)}{3\left(x-1\right)}= \frac{2\left(x-1\right)}{3\left(x-1\right)}\\ \Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\\\Leftrightarrow 3\left(7x-3\right)-2\left(x-1\right)=0\\ \Leftrightarrow21x-9-2x+2=0\\ \Leftrightarrow19x-7=0\\ \Leftrightarrow19x=7\\ \Leftrightarrow x=\frac{7}{19}\)

\(b.\frac{2\left(3-7x\right)}{1+x}=\frac{1}{2}\\ \Leftrightarrow\frac{4\left(3-7x\right)}{2\left(1+x\right)}=\frac{1\left(1+x\right)}{2\left(1+x\right)}\\\Leftrightarrow 4\left(3-7x\right)=1\left(1+x\right)\\ \Leftrightarrow4\left(3-7x\right)-1\left(1+x\right)=0\\ \Leftrightarrow12-28x-1-x=0\\ \Leftrightarrow11-29x=0\\ \Leftrightarrow-29x=-11\\ \Leftrightarrow x=\frac{-11}{-29}=\frac{11}{29}\)

\(c.\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\\ \Leftrightarrow\frac{\left(5x-1\right)\left(3x-1\right)}{\left(3x+2\right)\left(3x-1\right)}=\frac{\left(5x-7\right)\left(3x+2\right)}{\left(3x+2\right)\left(3x-1\right)}\\ \Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\\ \Leftrightarrow\left(5x-1\right)\left(3x-1\right)-\left(5x-7\right)\left(3x+2\right)=0\\ \Leftrightarrow15x^2-5x-3x+1-15x^2-10x+21x+14=0\\ \Leftrightarrow3x+15=0\\\Leftrightarrow 3x=-15\\\Leftrightarrow x=-5\)

\(d.\frac{4x+7}{x-1}=\frac{12x+5}{3x+4}\\\Leftrightarrow \frac{\left(4x+7\right)\left(3x+4\right)}{\left(x-1\right)\left(3x+4\right)}=\frac{\left(12x+5\right)\left(x-1\right)}{\left(3x+4\right)\left(x-1\right)}\\\Leftrightarrow \left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\\\Leftrightarrow \left(4x+7\right)\left(3x+4\right)-\left(12x+5\right)\left(x-1\right)=0\\ \Leftrightarrow12x^2+16x+21x+28-12x^2-12x+5x-5=0\\ \Leftrightarrow30x+23=0\\ \Leftrightarrow30x=-23\\ \Leftrightarrow x=\frac{-23}{30}\)

\(e.\frac{1}{x-2}+3=\frac{3-x}{x-2}\\ \Leftrightarrow\frac{1}{x-2}+\frac{3\left(x-2\right)}{x-2}=\frac{3-x}{x-2}\\ \Leftrightarrow1+3\left(x-2\right)=3-x\\\Leftrightarrow 1+3x-6=3-x\\\Leftrightarrow 1+3x-6-3+x=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow4x=8\\ \Leftrightarrow x=2\)

12 tháng 3 2020

\(f.\frac{8-x}{x-7}-8=\frac{1}{x-7}\\ \Leftrightarrow\frac{8-x}{x-7}-\frac{8\left(x-7\right)}{x-7}=\frac{1}{x-7}\\ \Leftrightarrow8-x-8\left(x-7\right)=1\\ \Leftrightarrow8-x-8\left(x-7\right)-1=0\\\Leftrightarrow 8-x-8x+56-1=0\\\Leftrightarrow 63-9x=0\\\Leftrightarrow -9x=-63\\ \Leftrightarrow x=\frac{-63}{-9}=7\)

\(g.\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\\ \Leftrightarrow\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{\left(x-5\right)\left(x+5\right)}\\\Leftrightarrow \frac{\left(x+5\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\frac{20}{\left(x-5\right)\left(x+5\right)}\\ \Leftrightarrow\left(x+5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)=20\\\Leftrightarrow \left(x+5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)-20=0\\ \Leftrightarrow x^2+5x+5x+25-x^2+5x+5x-25-20=0\\ \Leftrightarrow20x-20=0\\ \Leftrightarrow20x=20\\ \Leftrightarrow x=1\)

\(j.\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\\\Leftrightarrow \frac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{2.2x}{2\left(x+1\right)\left(x-3\right)}\\ \Leftrightarrow x\left(x+1\right)+x\left(x-3\right)=4x\\\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)-4x=0\\\Leftrightarrow x^2+x+x^2-3x-4x=0\\ \Leftrightarrow2x^2-6x=0\\ \Leftrightarrow2x\left(x-3\right)=0\\\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right. \)

21 tháng 1 2017

2. \(\frac{1}{x-1}-\frac{7}{x-2}=\frac{1}{\left(x-1\right)\left(2-x\right)}\) (ĐKXĐ:\(x\ne1,x\ne2\))

\(\Leftrightarrow\frac{1}{x-1}+\frac{7}{2-x}=\frac{1}{\left(x-1\right)\left(2-x\right)}\)

\(\Leftrightarrow\frac{2-x+7\left(x-1\right)}{\left(x-1\right)\left(2-x\right)}=\frac{1}{\left(x-1\right)\left(2-x\right)}\)

\(\Rightarrow2-x+7\left(x-1\right)=1\)

\(\Leftrightarrow2-x+7x-7=1\)

\(\Leftrightarrow-x+7x=1-2+7\)

\(\Leftrightarrow6x=6\)

\(\Leftrightarrow x=1\) (Không thỏa mãn ĐKXĐ)

Vậy phương trình trên vô nghiệm

22 tháng 1 2017

ko phan tich duoc nha bn

chuc bn hoc gioi

happy new year

banhbanhqua

5 tháng 3 2019

a) Đề ( \(x\ne\pm1\))

>\(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}=\frac{4}{\left(x+1\right)\left(x-1\right)}\\ \Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=4\\ \Leftrightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)=4\\ \Leftrightarrow2.2x=4\Leftrightarrow x=1\left(kothỏa\right)\)

Vậy \(S=\varnothing\)

5 tháng 3 2019

b) đề \(\left(x\ne-\frac{1}{2},\frac{1}{2}\right)\)

\(\frac{32x^2}{12\left(1-2x\right)\left(1+2x\right)}=\frac{-8x\left(1+2x\right)}{12\left(1-2x\right)\left(1+2x\right)}-\frac{3\left(1+8x\right)\left(1-2x\right)}{12\left(1-2x\right)\left(1+2x\right)}\\ \Leftrightarrow32x^2=-8x-16x^2-3-12x+48x^2\\ \Leftrightarrow20x+3=0\Leftrightarrow x=\frac{20}{3}\left(thỏadk\right)\)

Vậy \(S=\left\{\frac{20}{3}\right\}\)

1 tháng 6 2018

vì bài dài quá nên mình làm từng bài 1 nhé

1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Do đó : 

\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)

1 tháng 6 2018

2.

Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Do đó : 

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)

28 tháng 3 2020

c, ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x-3\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)

- Ta có : \(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\)

=> \(\frac{12\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}-\frac{8\left(x-1\right)}{2\left(x-3\right)\left(x-1\right)}=\frac{8\left(x-1\right)}{2\left(x-3\right)\left(x-1\right)}\)

=> \(12\left(x-3\right)-8\left(x-1\right)=8\left(x-1\right)\)

=> \(12x-36-8x+8-8x+8=0\)

=> \(-4x-20=0\)

=> \(x=-5\) ( TM )

Vậy phương trình trên có tập nghiệm là \(S=\left\{-5\right\}\)

b, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne0\\2x-3\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne0\\x\ne\frac{3}{2}\end{matrix}\right.\)

Ta có : \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)

=> \(\frac{x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{5\left(2x-3\right)}{x\left(2x-3\right)}\)

=> \(x-3=5\left(2x-3\right)\)

=> \(x-3-10x+15=0\)

=> \(-9x=-12\)

=> \(x=\frac{4}{3}\) ( TM )

Vậy phương trình trên có nghiệm là \(S=\left\{\frac{4}{3}\right\}\)

28 tháng 3 2020

\(a,\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne-1\\x\ne2\end{matrix}\right.\)

\(\Leftrightarrow\frac{2-x}{\left(x+1\right)\left(2-x\right)}+\frac{5x+5}{\left(2-x\right)\left(x+1\right)}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)

\(\Leftrightarrow2-x+5x+5=15\)

\(\Leftrightarrow7+4x=15\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\)

\(\Leftrightarrow Ptvn\)

\(b,\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne0\\x\ne\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\frac{x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{10x-15}{x\left(2x-3\right)}\)

\(\Leftrightarrow x-3=10x-15\)

\(\Leftrightarrow x-3-10x+15=0\)

\(\Leftrightarrow-9x+12=0\)

\(\Leftrightarrow-9x=-12\)

\(\Leftrightarrow\frac{4}{3}\)

\(c,\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)

\(\Leftrightarrow\frac{6x-18}{\left(x-1\right)\left(x-3\right)}-\frac{4x-4}{\left(x-1\right)\left(x-3\right)}=\frac{4x-4}{\left(x-1\right)\left(x-3\right)}\)

\(\Leftrightarrow6x-18-4x+4=4x-4\)

\(\Leftrightarrow2x-14=4x-4\)

\(\Leftrightarrow-2x=10\)

\(\Leftrightarrow x=-5\)

\(d,\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne1\\x\ne2\\x\ne3\end{matrix}\right.\)

\(\Leftrightarrow\frac{3x-9}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\frac{2x-4}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\frac{x-1}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow3x-9+2x-4=x-1\)

\(\Leftrightarrow4x-12=0\)

\(\Leftrightarrow4x=12\)

\(\Leftrightarrow x=3\)

\(\Leftrightarrow Ptvn\)

Vậy .................................

16 tháng 4 2020

\(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)

<=> \(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)

<=> \(\frac{3\left(2x-1\right)}{5\cdot3}-\frac{5\left(x-2\right)}{3\cdot5}-\frac{x+7}{15}=0\)

<=> \(\frac{6x-3-5x+10-x-7}{15}=0\)

<=> \(\frac{-14}{15}=0\)

=> PT vô nghiệm

b: Để N là số nguyên dương thì \(\sqrt{x}-3>0\)

\(\Leftrightarrow x>9\)

mà x là số nguyên

nên \(\left\{{}\begin{matrix}x\in Z\\x>9\end{matrix}\right.\)