Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Áp dụng TC của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a-2c+3e}{b-2d+3f}\left(đpcm\right)\)
a, Ta có
\(\frac{c}{d}=\frac{2c}{2d};\frac{e}{f}=\frac{3e}{3f}\)
\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}=\frac{3e}{3f}=\frac{a-2c+3e}{b-2d+3f}\)( t/c dãy tỉ số bằng nhau )
b, \(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a+c+e}{b+d+f}\)( t/c dãy tỉ số bằng nhau )
\(\Rightarrow\frac{a}{b}=\frac{a+c+e}{b+d+f}\)
\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{a+c+e}{b+d+f}\right)^3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{1}{2}\left(\frac{a+b}{ab}\right)\)
\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\)
\(\Rightarrow2ab=c.\left(a+b\right)\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ab-bc=ac-ab\)
\(\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
=> \(\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\)
=> \(\frac{2}{c}=\frac{a+b}{ab}\)
=> 2ab = ac + bc
=> ac + bc - 2ab = 0
=> (ac - ab) + (bc - ab) = 0
=> a(c - b) + b(c - a) = 0
=> a(c - b) = -b(c - a)
=> a(c - b) = b(a - c)
=> \(\frac{a}{b}=\frac{a-c}{c-b}\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow\frac{1}{c}.2=\frac{a}{ab}+\frac{b}{ab}\)
\(\Rightarrow2c=\frac{a+b}{ab}\)
\(\Rightarrow2ab=\left(a+b\right)c\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ab-bc=ac-bc\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)
với a,b,c khác 0 và b khác c
đpcm.
\(\frac{1}{a}-\frac{1}{b}=\frac{b-a}{ab}=\frac{-ab}{ab}=-1\)
\(\Rightarrow\frac{1}{a}-\frac{1}{b}=-1\)