\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2016

\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}=\frac{1}{1024}\)dùng phương pháp loại trừ 

19 tháng 6 2019

\(2A=1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{512}\Rightarrow2A-A=1-\frac{1}{1024}=\frac{1023}{1024}\)

19 tháng 6 2019

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)

\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)

\(2A-A=\left[1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\right]-\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\right]\)

\(A=1-\frac{1}{2014}=\frac{2013}{2014}\)

2 tháng 2 2020

Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)

Đặ A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)(1)

=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\)(2)

Lấy (2) trừ (1) theo vế ta có : 

2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)

=> A = \(1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{20}}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}\)

\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^9}\)

\(\Rightarrow2A-A=1-\frac{1}{2^{10}}=\frac{1023}{1024}\)

14 tháng 4 2018

\(=\frac{1023}{1024}\)nha bn

14 tháng 4 2018

1+1/2/+1/4+1/8+...+1/1024

=1+(1-1/2)+(1/2-1/4)+(1/4-1/8)+...(1/512-1/1024)

=1+1-1/2+1/2-1/4+1/4-1/8+...+1/512-1/1024

=1+1-1/1024

=2-1/1024

=2047/1024

19 tháng 7 2016

\(K=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+...+\left(1-\frac{1}{1024}\right)\)

\(K=\left(1-\frac{1}{2^1}\right)+\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{2^3}\right)+...+\left(1-\frac{1}{2^{10}}\right)\)

\(K=\left(1+1+1+...+1\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

                 10 số 1                                         

\(K=10-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

                                     Đặt B

\(B=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

\(2B-B=1-\frac{1}{2^{10}}\)

\(B=1-\frac{1}{1024}=\frac{1023}{1024}\)

\(K=10-\frac{1023}{1024}=\frac{9217}{1024}\)

Số to wa ak

19 tháng 7 2016

\(K=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+...+\left(1-\frac{1}{1024}\right)\)

\(K=\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{1024}\right)\)    

\(K=10-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{1024}\right)\)

\(2K=20-\left(1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{512}\right)\)

20 tháng 4 2017

chào cháu

20 tháng 4 2017

C= [1-\(\frac{1}{2}\)]+[1-\(\frac{1}{4}\)]+.....+[1-\(\frac{1}{2014}\)]

C=\(\frac{1}{2}\)\(\frac{3}{4}\)+.........+\(\frac{2013}{2014}\)

C= \(\frac{1}{2}\)-\(\frac{1}{2}\)+\(\frac{5}{4}\)-\(\frac{5}{4}\)+\(\frac{25}{12}\)-\(\frac{25}{12}\)+\(\frac{48}{49}\)-\(\frac{48}{49}\)+......+\(\frac{4056195}{4056196}\)

C=\(\frac{4056195}{4056196}\)

\(\frac{1}{2.5}\)\(+\)\(\frac{1}{5.8}\)\(+\frac{1}{8.11}\)\(+...+\frac{1}{152.155}\)

=\(\frac{1}{2}\) \(-\frac{1}{5}\) \(+\frac{1}{5}\) \(-\frac{1}{8}\) \(+...+\frac{1}{152}\) \(-\frac{1}{155}\)

=\(\frac{1}{2}\)\(-\frac{1}{155}\)

=\(\frac{153}{310}\)

7 tháng 7 2021

a) \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{1000}-1\right)=-\frac{1}{2}.\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)...\left(-\frac{999}{1000}\right)\)

\(=-\frac{1.2.3...999}{2.3.4...1000}=-\frac{1}{1000}\)

b)\(B=\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}:\frac{3}{4}=\frac{3\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}:\frac{3}{4}=\frac{3}{4}:\frac{3}{4}=1\)

d) \(D=1+\frac{1}{2}+\frac{1}{4}+..+\frac{1}{512}+\frac{1}{1024}\)

=> \(2D=2+1+\frac{1}{2}+...+\frac{1}{256}+\frac{1}{512}\)

=> \(2D-D=\left(2+1+\frac{1}{2}+...+\frac{1}{256}+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}+\frac{1}{1024}\right)\)

=> \(D=2-\frac{1}{1024}=\frac{2047}{1024}\)

29 tháng 8 2017

Ta có : \(A=3+3^2+3^3+.....+3^{2016}\)

\(\Rightarrow3A=3^2+3^3+3^4+......+3^{2017}\)

\(\Rightarrow3A-A=3^{2017}-3\)

\(\Rightarrow2A=3^{2017}-3\)

\(\Rightarrow A=\frac{3^{2017}-3}{2}\)

\(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....+\frac{1}{1024}\)

\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{512}\)

\(\Rightarrow2B-B=1-\frac{1}{1024}\)

\(\Rightarrow B=\frac{1023}{1024}\)