Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này bạn mở sách bồi dưỡng toán ra trang gần cuối là thấy ngay ấy mà
a: =91/105+60/105-101/105
=50/105=10/21
c: \(\dfrac{3}{4}\cdot\dfrac{5}{2}\cdot\dfrac{7}{6}=\dfrac{3}{6}\cdot\dfrac{7}{2}\cdot\dfrac{5}{4}=\dfrac{1}{2}\cdot\dfrac{7}{2}\cdot\dfrac{5}{4}=\dfrac{35}{16}\)
d: =2-2/9
=18/9-2/9
=16/9
e: =24/36-9/36+8/36
=23/36
g: =5/2+1/2
=3
\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(A=1-\frac{1}{101}\)
\(A=\frac{100}{101}\)
\(B=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(B=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(B=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(B=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)
\(B=\frac{5}{2}.\frac{100}{101}\)
\(B=\frac{250}{101}\)
Tổng a có số các số hạng là :
( \(101-1\) ) : \(2\) + \(1\) = \(51\)
Tổng a là :
\(\frac{\left(101+1\right).51}{2}\) = \(2601\)
Ta có:
\(C= 4+44+444+......+4444444444\)
\(C= 4.(10.1+9.10+8.100+7.1000+...+1.1000000000\)
\(C= 4.(100+90+800+7000+60000+500000+4000000+30000000+200000000+1000000000)\)
\(C=4.12345678900\)
\(C=4938271600\)
Tương tự.
A = 2/1*5 + 2/5*9 + ... + 2/101*105
= 1/2(4/1*5 + 4/5*9 + ... + 4/101*105)
= 1/2(1 - 1/5 + 1/5 - 1/9 + ... + 1/101 - 1/105)
= 1/2(1 - 1/105)
= 1/2 * 104/105 = 52/105
Sửa câu b. Phân số thứ 2 phải là 4/5*8
B = 4/2*5 + 4/5*8 + ... + 4/47*50
= 4/3(3/2*5 + 3/5*8 + ... + 3/47*50)
= 4/3(1/2 - 1/5 + 1/5 - 1/8 + ... + 1/47 - 1/50)
= 4/3(1/2 - 1/50)
= 4/3 * 24/50 = 16/25
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+....+\frac{2}{99\cdot101}\)
\(\frac{2}{1\cdot3}=\frac{3-1}{1\cdot3}=\frac{3}{1\cdot3}-\frac{1}{1\cdot3}=\frac{1}{1}-\frac{1}{3}=1-\frac{1}{3}\)
\(\frac{2}{3\cdot5}=\frac{5-3}{3\cdot5}=\frac{5}{3\cdot5}-\frac{3}{3\cdot5}=\frac{1}{3}-\frac{1}{5}\)
....
\(\frac{2}{99\cdot101}=\frac{101-99}{99\cdot101}=\frac{101}{99\cdot101}-\frac{99}{99\cdot101}=\frac{1}{99}-\frac{1}{101}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)
\(\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+\frac{5}{5\cdot7}+...+\frac{5}{99\cdot101}\)
=\(\frac{5}{2}\cdot\frac{2}{1\cdot3}+\frac{5}{2}\cdot\frac{2}{3\cdot5}+\frac{5}{2}\cdot\frac{2}{5\cdot7}+...+\frac{5}{2}\cdot\frac{2}{99\cdot101}\)
=\(\frac{5}{2}\cdot\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right]\)
=\(\frac{5}{2}\cdot\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right]\)
=\(\frac{5}{2}\cdot\left(1-\frac{1}{101}\right)\)
=\(\frac{5}{2}\cdot\frac{100}{101}\)
\(=\frac{250}{101}\)
Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha
1, 7A = 7+7^2+7^3+....+7^2008
6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1
=> A = (7^2008-1)/6
Tk mk nha
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)
\(\Rightarrow6A=7^{2008}-1\)
\(\Rightarrow A=\frac{7^{2008}-1}{6}\)
A=3.(1/1.2+1/2.3+1/3.4+.....+1/399.400)
A=3.(1/1-1/2+1/2-1/3+......+1/399-1/400)
A=3.(1-1/400)
A=3.399/400
A=1197/400
A=3.(1/1.2+1/2.3+1/3.4+.....+1/399.400)
A=3.(1/1-1/2+1/2-1/3+......+1/399-1/400)
A=3.(1-1/400)
A=3.399/400
A=1197/400
Giúp mik nhoé
\(E=5+5^3+5^5+...+5^{101}\\ \Rightarrow25E=5^3+5^5+5^7+...+5^{103}\\ \Rightarrow25E-E=5^3+5^5+...+5^{103}-5-5^3-...-5^{101}\\ \Rightarrow24E=5^{103}-5\\ \Rightarrow E=\dfrac{5^{103}-5}{24}\)