K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có D,E lần lượt là trung điểm của AC,AB

=>DE là đường trung bình của ΔABC

=>DE//BC và \(DE=\dfrac{BC}{2}=2\left(cm\right)\)

Xét hình thang BEDC có

M,N lần lượt là trung điểm của EB,DC

=>MN là đường trung bình của hình thang BEDC

=>MN//ED//BC và \(MN=\dfrac{ED+BC}{2}=\dfrac{2+4}{2}=3\left(cm\right)\)

b: Xét ΔBED có MP//ED
nên \(\dfrac{MP}{ED}=\dfrac{BM}{BE}=\dfrac{1}{2}\)

=>\(MP=\dfrac{1}{2}ED=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BC=\dfrac{1}{4}BC\)

Xét ΔCED có NQ//ED
nên \(\dfrac{NQ}{ED}=\dfrac{CN}{CD}=\dfrac{1}{2}\)

=>\(NQ=\dfrac{1}{2}ED=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BC=\dfrac{1}{4}BC\)

\(MN=\dfrac{1}{2}\left(ED+BC\right)=\dfrac{1}{2}\left(\dfrac{1}{2}BC+BC\right)=\dfrac{1}{2}\cdot\dfrac{3}{2}BC=\dfrac{3}{4}BC\)

=>\(MP+PQ+QN=\dfrac{3}{4}BC\)

=>\(PQ=\dfrac{3}{4}BC-\dfrac{1}{4}BC-\dfrac{1}{4}BC=\dfrac{1}{4}BC\)

Do đó:MP=PQ=QN

16 tháng 9 2020

A A A B B B C C C D D D E E E N N N M M M P P P Q Q Q

a) Ta có : \(ED=\frac{BC}{2}=\frac{4}{2}=2\left(cm\right)\)

MN là đường trung bình của hình thang BEDC nên ta có :

\(MN=\frac{ED+BC}{2}=\frac{2+4}{2}=3\left(cm\right)\)

b) \(\Delta BED\)có BM = ME(vì M là trung điểm của BE) , mà MP // ED nên BP = PD . Do đó \(MP=\frac{ED}{2}=\frac{2}{2}=1\left(cm\right)\)

\(\Delta\)CED có NC = ND(vì N là trung điểm của CD) , mà NQ // ED nên CQ = CE . Do đó \(NQ=\frac{ED}{2}=\frac{2}{2}=1\left(cm\right)\)

Lại có : PQ = MN - MP - NQ = 3 - 1 - 1 = 1(cm)

Vậy MP = NQ = PQ = 1cm

3 tháng 8 2021

TÍNH ĐỘ DÀI ED thì sao ạ

 

25 tháng 6 2017

Bạn tự vẽ hình nha

a) Vì D,E là trung điểm của AC và AB nên ED là đường trung bình của tam giác ABC.

Suy ra ED = \(\frac{BC}{2}\)\(\frac{4}{2}\)= 2 (cm)

Tứ giác EDCB có ED // BC ( Vì ED là đường trung bình của tam giác ABC) nên EDCB là hình thang.

Vì M, N là trung điểm của EB và CD nên MN là đường trung bình của hình thang EDCB

suy ra MN = \(\frac{ED+BC}{2}\)\(\frac{2+4}{2}\)=3 (cm).

Vậy MN =3 (cm)

b) Ta có MN// ED ( MN là đương tb củahình thang EDCB) nên MP//ED , QN//ED 

Xét tg EBD có MP//ED (cmt)

                     MB =ME (gt)

Suy ra P là trung điểm của BD ,nên MP là đương tb của tg EBD nên MP= \(\frac{ED}{2}\)=\(\frac{2}{2}\)= 1(cm).

Chứng minh tương tự với tg ECD cũng có QN = 1(cm) 

Ta có MN = MP + PQ +QN

         3  = 1+PQ +1

        QN =1 (cm) 

Nên MP=PQ=QN.(đpcm)

Có nhìu chỗ thiếu xót mong mấy bạn thông cảm.

11 tháng 9 2017

Nếu c/m tứ giác MEDN là hình thang thì s bn ơi..................?????

17 tháng 8 2021

a) AECF là hình bình hành

b)mk ko biết 

c) sai đề

a: Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

DO đó: ED là đường trung bình

=>ED//BC và ED=BC/2=2(cm)

Xét hình thang BEDC có

M là trung điểm của BE

N là trung điểm của DC

Do đó: MN là đường trung bình

=>MN//ED//BC và \(MN=\dfrac{ED+BC}{2}=\dfrac{2+4}{2}=3\left(cm\right)\)

b: Xét ΔBED có MP//ED

 nên MP/ED=BM/BE

=>MP/2=1/2

=>MP=1(cm)

Xét ΔCED có NQ//ED

nên NQ/ED=CN/CD
=>NQ=1(cm)

MP+PQ+QN=MN

nên PQ=1(cm)

=>MP=PQ=QN

Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F. a) Chứng minh ED/AD + BF/BC = 1b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song...
Đọc tiếp

Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F. 

a) Chứng minh ED/AD + BF/BC = 1

b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.

Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.

a) Chứng minh CF = DK

b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.

Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.

Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.

Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.

7
17 tháng 3 2020

Bài 6 :

Tự vẽ hình nhá :)

a) Gọi O là giao điểm của AC và EF

Xét tam giác ADC có :

EO // DC => AE/AD = AO/AC (1)

Xét tam giác ABC có :

OF // DC

=> CF/CB = CO/CA (2)

Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm

Bài 7 :

A B C D G K M F E

a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)

Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG

Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM 

=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)

Từ (1) và (2) => CF / EF = DK / AD

Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È

=> CF = DK ( đpcm )

Bài 8 : 

A B C M N 38 11 8

Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )

Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :

AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38

=> 1140 = 19.AN + 722

=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )

=> NC = 38 - 12 = 26 ( cm )

4 tháng 2 2020

chắc sang năm mới làm xong mất