K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2022

tớ gợi ý nhé:

gọi hai cạnh góc vuông là a;b, cạnh huyền là c

đặt \(\dfrac{a}{8}\) = \(\dfrac{b}{15}\) vào k

=> a=....; b= .....

sau đó là áp dụng đl pi-ta-go( ghép hết vào với nhau),tính c

Thế là xong

 

18 tháng 1 2022

thank you

14 tháng 2 2018

giả sử tam giác ABC vuông tại A(AC>AB)

ta có BC=102 cm

AC = (15.AB )/8 

tam giác ABC vuông tại A(giả thiết)

=> AB2 + AC2 =BC2

(=) AB2 + 225/64 AB2 = 1022 = 10404

(=) 289 AB2 = 10404.64=665856

=> AB= 2304

=> AB = \(\sqrt{2304}=48\)

AC= 15/8 . 48 = 90 (cm)

#Học-tốt

24 tháng 2 2020

Giả sử hai cạnh góc vuông cần tìm là a và b  (cm) ( b>a>0)

Vì hai canh góc vuông tỉ lệ với 8 và 15 nên a:b=8:15

hay a/8=b/15=k (k>0)

suy ra a=8k, b = 15k (1) 

vì tam giác vuông có cạnh huyền bằng 102 nên a^2 + b^2= 1022 (2)

từ (1) va (2) suy ra 64k2 + 225 k2 = 10404

289 k2 = 10404

k2=36

k=6

a=48 (cm), b = 90 (cm)

Đặt 2 cạnh góc vuông và cạnh huyên của tam giác lần lượt là  \(a;b;c\left(a;b\ne0\right)\)

Vì các cạnh góc vuông của tam giác lần lượt tỉ lệ với 8 và 15 \(\Rightarrow\frac{a}{8}=\frac{b}{15}\Leftrightarrow\frac{a^2}{8^2}=\frac{b^2}{15^2}\)

Vì là tam giác vuông \(\Rightarrow a^2+b^2=c^2\) ( ĐL Pytago ) . Áp dụng t/c dãy tỉ số bằng nhau

Ta có : \(\frac{a^2}{8^2}=\frac{b^2}{15^2}=\frac{a^2+b^2}{8^2+15^2}=\frac{c^2}{64+225}=\frac{10404}{289}=36\)

Vì \(\frac{a^2}{8^2}=36\Rightarrow\sqrt{\frac{a^2}{8^2}}=\sqrt{36}\Rightarrow\frac{a}{8}=6\Leftrightarrow a=6.8=48\)

Vì \(\frac{b^2}{15^2}=36\Rightarrow\sqrt{\frac{b^2}{15^2}}=\sqrt{36}\Rightarrow\frac{b}{15}=6\Leftrightarrow b=15.6=90\)

Vậy độ dài hai cạnh góc vuông của tam giác lần lượt là 48 và 90

22 tháng 7 2019

11 tháng 7 2019

13 tháng 8 2018

Gọi độ dài các cạnh góc vuông của tam giác lần lượt là 5k và 12k với k> 0. Dùng định lý Py-ta-go tính được độ dài cạnh huyền là 13k, do đó

5k +12k + 13k = 30 => k = 1.

Từ đó độ dài cạnh huyền là 13 cm.

23 tháng 5 2017

Gọi b, c là độ dài các cạnh góc vuông,a là độ dai cạnh huyền (tính bằng cm). Ta có:

\(\dfrac{b}{7}=\dfrac{c}{24}=k\Rightarrow b=7k,c=24k\)

Theo định lí Py-ta-go:

a2 = b2 + c2 = (7k)2 + (24k)2 = 625k2 = (25k)2

nên a = 25k

Theo đề bài a + b + c = 112 (cm). Từ đó ta tính được k = 2. Vậy a = 50cm.

15 tháng 1 2018

Gọi b, c là độ dài các cạnh góc vuông,a là độ dai cạnh huyền (tính bằng cm). Ta có:

b7=c24=k⇒b=7k,c=24kb7=c24=k⇒b=7k,c=24k

Theo định lí Py-ta-go:

a2 = b2 + c2 = (7k)2 + (24k)2 = 625k2 = (25k)2

nên a = 25k

Theo đề bài a + b + c = 112 (cm). Từ đó ta tính được k = 2. Vậy a = 50cm.