Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi độ dài cạnh góc vuông là x
Theo đề, ta có: \(2x^2=4\)
hay \(x=\sqrt{2}\left(cm\right)\)
b: Gọi độ dài cạnh góc vuông là x
Theo đề, ta có: \(2x^2=2\)
hay x=1(cm)
cạnh huyền của tam giác vuông đó là : căn bậc 2 của ( 2 ^ 2 + 2 ^ 2 ) = 2,83 dm
đáp số : 2,83 dm
Gọi cạnh huyền cần tìm là x
Áp dụng định lí Pytago cho tam giác vuông cân trên ta có :
x2 = 22 + 22
x2 = 4 + 4
x2 = 8
=> \(x=\sqrt{8}=2,8284...=2,83dm\)
Vậy cạnh huyền của tam giác đó = 2, 83dm
a) Xét \(\Delta ABC\)vuông cân tại A
Áp dụng định lí Pi-ta-go ta có :
\(AB^2+AC^2=BC^2=2^2=4\Rightarrow2AB^2=4\Rightarrow AB^2=2\Rightarrow AB=\sqrt{2}\approx1,4\left(cm\right)\)
b) Xét \(\Delta ABC\)vuông cân tại A
Áp dụng định lí Pitago ta có :
\(AB^2+AC^2=BC^2=\sqrt{2}^2=4\Rightarrow2AB^2=4\Rightarrow AB^2=2\Rightarrow AB=\sqrt{2}\approx1,4\left(cm\right)\)
Câu a,b đều giống nhau cả :))
\(\sqrt{2}cm\)chứ không phải \(\sqrt{2cm}\)
Câu b để mình sửa lại nhé,mình nhầm trầm trọng
Thông cảm cho mk :))
b) Xét \(\Delta ABC\)vuông tại A có :
\(AB^2+AC^2=BC^2=\sqrt{2}^2=2\Rightarrow2AB^2=2\Rightarrow AB^2=1\Rightarrow AB=1\left(cm\right)\)
=> Độ dài cạnh góc vuông là 1cm.
vì tam giác đó là tam giác vuông cân nên 2 cạnh góc vuông bằng nhau
Gọi cạnh huyền của tam giác đó là x
Theo định lý Pytago ta có: x2 = 22 + 22
x2 = 4 + 4
x2 = 8
x = căn 8
mk ko có máy tính nên bạn tự tính nhé
Bài này dễ thế mà mi góp ý là những câu hỏi dễ như thế này bạn nên tự suy luận vì kiến thức thầy cô đã dạy hết rồi
Tam giác vuông cân là tam giác vuông có 2 cạnh góc vuông bằng nhau. Gọi độ dài cạnh góc vuông là x (cm) (x > 0)
Áp dụng định lí pitago ta có:
x2 + x2 = 22 => 2x2 = 4 => x2 =2. Do đó x = √2cm