Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\)vuông cân tại A
Áp dụng định lí Pi-ta-go ta có :
\(AB^2+AC^2=BC^2=2^2=4\Rightarrow2AB^2=4\Rightarrow AB^2=2\Rightarrow AB=\sqrt{2}\approx1,4\left(cm\right)\)
b) Xét \(\Delta ABC\)vuông cân tại A
Áp dụng định lí Pitago ta có :
\(AB^2+AC^2=BC^2=\sqrt{2}^2=4\Rightarrow2AB^2=4\Rightarrow AB^2=2\Rightarrow AB=\sqrt{2}\approx1,4\left(cm\right)\)
Câu a,b đều giống nhau cả :))
\(\sqrt{2}cm\)chứ không phải \(\sqrt{2cm}\)
Câu b để mình sửa lại nhé,mình nhầm trầm trọng
Thông cảm cho mk :))
b) Xét \(\Delta ABC\)vuông tại A có :
\(AB^2+AC^2=BC^2=\sqrt{2}^2=2\Rightarrow2AB^2=2\Rightarrow AB^2=1\Rightarrow AB=1\left(cm\right)\)
=> Độ dài cạnh góc vuông là 1cm.
a) Gọi \(\Delta\)ABC vuông cân tại A có BC = 2 cm
Áp dụng định lý Pytago cho \(\Delta\)ABC vuông cân tại A ta có :
AB2 + AC2 = BC2
AB2 + AB2 = 2 ( Vì AB = AC)
2.AB2 = 4
=> AB2 = 2
=> AB = \(\sqrt{2}\)
Vậy AB = AC = \(\sqrt{2}\)(cm)
b) Gọi \(\Delta\)KFC vuông cân tại K có FC = \(\sqrt{2}\)(cm)
Áp dụng định lý Pytago cho \(\Delta\)KFC vuông cân tại K ta có :
FC2 = KF2 + KC2
(\(\sqrt{2}\))2 = 2. KF2 (vì KC = KF)
=> 2 = 2 . KF2
=> KF2 = 1
=> KF = 1 (cm)
Vậy KC = KF = 1 (cm)
cạnh huyền của tam giác vuông đó là : căn bậc 2 của ( 2 ^ 2 + 2 ^ 2 ) = 2,83 dm
đáp số : 2,83 dm
Gọi cạnh huyền cần tìm là x
Áp dụng định lí Pytago cho tam giác vuông cân trên ta có :
x2 = 22 + 22
x2 = 4 + 4
x2 = 8
=> \(x=\sqrt{8}=2,8284...=2,83dm\)
Vậy cạnh huyền của tam giác đó = 2, 83dm
Tam giác vuông cân là tam giác vuông có 2 cạnh góc vuông bằng nhau. Gọi độ dài cạnh góc vuông là x (cm) (x > 0)
Áp dụng định lí pitago ta có:
x2 +x2 =(√2)2⇒ 2x2 = 2 => x2 =1
=> x=1cm
a: Gọi độ dài cạnh góc vuông là x
Theo đề, ta có: \(2x^2=4\)
hay \(x=\sqrt{2}\left(cm\right)\)
b: Gọi độ dài cạnh góc vuông là x
Theo đề, ta có: \(2x^2=2\)
hay x=1(cm)