K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

Bài tập tổng hợp chương 4 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Xét hình chóp S.ABC có AB = AC = BC = a và SH = 2a.

Gọi M là trung điểm của BC thì AM vừa là đường trung tuyến, vừa là đường cao, vừa là đường phân giác của tam giác đều ABC nên AM ⊥ BC và HM = 1/3AM.

Áp dụng định lý Py – ta – go vào tam giác vuông ABM vuông tại M ta được:

Bài tập tổng hợp chương 4 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Do đó HM = (a√3 )/6.

Áp dụng định lí Py – ta – go vào tam giác vuông SHM vuông tại H, ta có:

S M 2 = H M 2 + S H 2

Bài tập tổng hợp chương 4 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 4 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng công thức:   S t p   =   S x q   +   S d

Ta có:Bài tập tổng hợp chương 4 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 4 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

23 tháng 11 2017

Bài tập: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Xét hình chóp S.ABC có AB = AC = BC = a và SH = 2a.

Gọi M là trung điểm của BC thì AM vừa là đường trung tuyến, vừa là đường cao, vừa là đường phân giác của tam giác đều ABC nên AM ⊥ BC và HM = 1/3AM.

Áp dụng định lý Py – ta – go vào tam giác vuông ABM vuông tại M ta được:

Ta có:

Bài tập: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

9 tháng 3 2019

Bài tập: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Xét hình chóp S.ABC có AB = AC = BC = a và SH = 2a.

Gọi M là trung điểm của BC thì AM vừa là đường trung tuyến, vừa là đường cao, vừa là đường phân giác của tam giác đều ABC nên AM ⊥ BC và HM = 1/3AM.

Áp dụng định lý Py – ta – go vào tam giác vuông ABM vuông tại M ta được:

AB2 = BM2 + AM2 ⇒ a2 = ( a/2 )2 + AM2

Bài tập: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Do đó HM = (a√3) /6.

Áp dụng định lí Py – ta – go vào tam giác vuông SHM vuông tại H, ta có:

SM2 = HM2 + SH2 ⇒ SM2 = ( (a√3) /6 )2 + ( 2a )2

Bài tập: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng công thức: Stp = Sxq + Sd

Ta có:  S x q = 3 a 2 . 7 a 3 6 = 7 a 2 3 4 S d = 1 2 . a . a 3 2 = a 2 3 4

⇒ S t p = 7 a 2 3 4 + a 2 3 4 = 2 a 2 3   đ v d t

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Diện tích xung quanh của hình chóp tam giác đều là: \(\frac{{10.3}}{2}.12 = 180\) (\(c{m^2}\))

b) Diện tích xung quanh của hình chóp tứ giác đều là: \(\frac{{72.4}}{2}.77 = 11088\) (\(d{m^2}\))

Diện tích đáy của hình chóp tứ giác đều là: \({72^2}=5184\) (\(d{m^2}\))

Diện tích toàn phần của hình chóp tứ giác đều là: \(11088 + 5184 = 16 272\) (\(d{m^2}\))

Thể tích của hình chóp tứ giác đều là: \(\frac{1}{3}.5184.68,1=117676,8\) (\(d{m^3}\))

Sxq=16*4*17/2=544cm2

Stp=544+16^2=800cm2

V=1/3*16^2*15=1280cm3

31 tháng 7 2023

Nữa chu vi đáy của hình chóp đều:

\(16\cdot4:2=32\left(cm\right)\)

Diện tích xung quanh của hình chóp đều:

\(S_{xq}=32\cdot17=544\left(cm^2\right)\)

Diện tích mặt đáy của hình chóp đều:

\(S_đ=16^2=256\left(cm^2\right)\)

Diện tích toàn phần của hình chóp đều:

\(S_{tp}=S_đ+S_{xq}=544+256=800\left(cm^2\right)\)

Thể tích của hình chóp đều:
\(V=\dfrac{1}{3}\cdot256\cdot15=1280\left(cm^3\right)\)

29 tháng 6 2023

tách ra bn dài quá

10 tháng 11 2023

20 cm = 0,2 m

Diện tích toàn phần của hình chóp tứ giác đều là:

\(\dfrac12\cdot(4\cdot25)\cdot0,2+25^2=635(m^2)\)

Vậy: ...

\(\text{#}Toru\)

Sxq=1/2*24*4*20=12*80=960m2

Stp=960+25^2=1585m2

26 tháng 12 2018

Gọi h là chiều cao của hình lăng trụ đứng.

Giải bài 51 trang 127 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 51 trang 127 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 51 trang 127 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 51 trang 127 SGK Toán 8 Tập 2 | Giải toán lớp 8

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Diện tích xung quanh của hình chóp tam giác đều là:

\(\frac{{99.40}}{2}.3 = 5940\) (\(c{m^2}\))

Diện tích đáy của hình chóp là:

\(\frac{{40.34,6}}{2} = 692\) (\(c{m^2}\))

Diện tích toàn phần của hình chóp là:

\(5940 + 692 = 6632\) (\(c{m^2}\))

Thể tích của hình chóp là:

\(\frac{1}{3}.692.98,3 \approx 22674,53\) (\(c{m^3}\))

b) Diện tích xung quanh của hình chóp tứ giác đều là:

\(\frac{{91.120}}{2}.4 = 21840\) (\(c{m^2}\))

Diện tích đáy của hình chóp là:

\(120.120 = 14400\) (\(c{m^2}\))

Diện tích toàn phần của hình chóp là:

\(21840 + 14400 = 36240\) (\(c{m^2}\))

Thể tích của hình chóp là:

\(\frac{1}{3}.14400.68,4 = 328320\) (\(c{m^3}\))