K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7

Áp dụng định lý Pythagore cho tam giác ABC vuông tại A ta có: 

\(AB^2+AC^2=BC^2\\ =>BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

Áp dụng hệ thức lượng ta có:

\(AB^2=BC\cdot BH=>BH=\dfrac{AB^2}{BC}=\dfrac{3^2}{5}=\dfrac{9}{5}\left(cm\right)\) 

\(AB\cdot AC=AH\cdot BC=>AH=\dfrac{AB\cdot AC}{BC}=\dfrac{3\cdot4}{5}=\dfrac{12}{5}\left(cm\right)\)

\(=>S_{HAB}=\dfrac{1}{2}\cdot AH\cdot BH=\dfrac{1}{2}\cdot\dfrac{12}{5}\cdot\dfrac{9}{5}=\dfrac{54}{25}\left(cm^2\right)\)

22 tháng 12 2017

tớ chịu

1 tháng 5 2021

Xét tam giác vuông HBA và tam giác vuông ABC có:

B là góc chung

 suy ra tam giác vuông HBA đồng dạng tam giác vuông ABC

suy ra HB/AB=BA/BC=HA/AC

suy ra BA/BC=HA/AC

suy ra 3/5=HA/4(BC bạn tính theo Py- ta-go nhe)

suy ra HA=4x3/5=2,4cm

19 tháng 12 2020

Hình vẽ bạn phải tự vẽ được chứ, bài này là bài rất rất rất cơ bản rồi đấy:vv

Ta có tam giác ABC là tam giác vuông

=> SABC=\(\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.4.3=6\) (cm2)

Áp dụng định lý Py-ta-go vào tam giác vuông ABC:

BC2=AB2+AC2=42+32=52

=> BC=5(cm)

Mà SABC=\(\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.AH.5=2,5.AH=6\)

=> AH=2,4(cm)

Vậy...

Có thể do cẩu thả mình sai số chỗ nào đó nhưng hướng làm như này nhé, đáng nhẽ bài này mình không giải đâu:vv

1 phần 2 ở bạn lấy ở đâu vậy

a: XétΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

DO đó: ΔABC\(\sim\)ΔHBA

b: Ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

10 tháng 5 2022

còn tính diện tích nx bn ơi

 

 

a) Xét tứ giác AKHP có 

\(\widehat{PAK}=90^0\)(ΔABC vuông tại A)

\(\widehat{AKH}=90^0\left(HK\perp AB\right)\)

\(\widehat{APH}=90^0\left(HP\perp AC\right)\)

Do đó: AKHP là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Sửa đề: AC=4cm; AB=3cm

a: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=4/8=0,5

=>AD=1,5cm; CD=2,5cm

\(BD=\sqrt{1.5^2+3^2}=\dfrac{3}{2}\sqrt{5}\left(cm\right)\)

25 tháng 7 2018

Giup minh vs

https://olm.vn/hoi-dap/question/1269512.html

a: Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

=>EF=AH

b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot4=2\cdot3=6\left(cm^2\right)\)

\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

a: Xét ΔAHC vuông tại Hvà ΔHKC vuông tại K có

góc C chung

=>ΔAHC đồng dạng với ΔHKC

b: Xet ΔHAC vuông tại H có HK là đường cao

nên HK^2=AK*KC

c: \(S_{AHC}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)

\(AC=\sqrt{3^2+4^2}=5\left(cm\right)\)

CK=4^2/5=3,2cm

=>AK=1,8cm

=>HK=2,4cm

\(S_{HKC}=\dfrac{1}{2}\cdot2.4\cdot3.2=1.2\cdot3.2=3.84\left(cm^2\right)\)

a: Xét ΔAHC vuông tại Hvà ΔHKC vuông tại K có

góc C chung

=>ΔAHC đồng dạng với ΔHKC

b: Xet ΔHAC vuông tại H có HK là đường cao

nên HK^2=AK*KC

c: \(S_{AHC}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)

\(AC=\sqrt{3^2+4^2}=5\left(cm\right)\)

CK=4^2/5=3,2cm

=>AK=1,8cm

=>HK=2,4cm

\(S_{HKC}=\dfrac{1}{2}\cdot2.4\cdot3.2=1.2\cdot3.2=3.84\left(cm^2\right)\)