Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 11.12.
Kẻ đường cao \(AH,BK\).
Do tam giác \(\Delta AHD=\Delta BKC\left(ch-gn\right)\)nên \(DH=BK\).
Đặt \(AB=AH=x\left(cm\right),x>0\).
Suy ra \(DH=\frac{10-x}{2}\left(cm\right)\)
Xét tam giác \(AHD\)vuông tại \(H\):
\(AD^2=AH^2+HD^2=x^2+\left(\frac{10-x}{2}\right)^2\)(định lí Pythagore)
Xét tam giác \(DAC\)vuông tại \(A\)đường cao \(AH\):
\(AD^2=DH.DC=10.\left(\frac{10-x}{2}\right)\)
Suy ra \(x^2+\left(\frac{10-x}{2}\right)^2=10.\frac{10-x}{2}\)
\(\Leftrightarrow x=2\sqrt{5}\)(vì \(x>0\))
Vậy đường cao của hình thang là \(2\sqrt{5}cm\).
Câu 11.11.
Kẻ \(AE\perp AC,E\in CD\).
Khi đó \(AE//BD,AB//DE\)nên \(ABDE\)là hình bình hành.
Suy ra \(AE=BD=15\left(cm\right)\).
Kẻ đường cao \(AH\perp CD\)suy ra \(AH=12\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AH\):
\(\frac{1}{AH^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AE^2}=\frac{1}{12^2}-\frac{1}{15^2}=\frac{1}{400}\)
\(\Rightarrow AC=20\left(cm\right)\)
\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.15.20=150\left(cm^2\right)\),
a,i, Tính được NF=15cm; M F N ^ ≈ 37 0 và M N F ^ = 53 0
ii, Tìm được MO = 36 5 cm, FO = 48 5 cm
iii, Tìm được
S
F
N
E
=
96
c
m
2
Cách 1: Ta có S F O H S F N E = F O F N . F H F E = 9 25
=> S ∆ F O H = 34 , 56 c m 2
Cách 2: Gợi ý. Kẻ đường cao OK của ∆FOH => S ∆ F O H = 34 , 56 c m 2
b, Ta có ∆MFN ~ ∆FEM(g.g) => M F F E = M N F M <=> M F 2 = M N . F E
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
a: NF=15cm
Xét ΔMNF vuông tại M có sin MFN=MN/NF=3/5
nên góc MFN=37 độ
=>góc MNF=53 độ
\(MO=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cn\right)\)
\(FO=\dfrac{12^2}{15}=9.6\left(cm\right)\)
b: Xét ΔMFN và ΔFEM có
góc MFN=góc FEM
góc FNM=góc EMF
Do đó: ΔMFN đồng dạng với ΔFEM
Suy ra:MF/FE=MN/MF
hay \(MF^2=MN\cdot FE\)
1)
a) Áp dụng định lí Pytago vào ΔMNF vuông tại M, ta được:
\(NF^2=MF^2+MN^2\)
\(\Leftrightarrow NF^2=9^2+12^2=225\)
hay NF=15(cm)
Xét ΔMNF vuông tại M có
\(\sin\widehat{MFN}=\dfrac{MN}{NF}=\dfrac{9}{15}=\dfrac{3}{5}\)
hay \(\widehat{MFN}\simeq37^0\)
\(\Leftrightarrow\widehat{MNF}=53^0\)
Goi hình thang ABCD, AB//CD, trên tia đối tia CD lấy E sao cho CE=AB.
Ta có: tgABC=tgECB (g.c.g)
=>BE=AC=9 và DE=DC+CE=DC+AB=15
Lại có: BE2+ BD2 = 92+122 = 152 = DE2
=> BD_|_BE
Mặt khác: S(ABC) = S(ECB); S(ADC)=S(BDC) (cùng đáy, chiều cao = nhau)
S(ABCD)=S(ABC)+S(ADC) =S(ECB)+S(BDC) =S(BDE) = 1/2BD.BE = 54
S= 54.
Nếu đúng thì tick nha