Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trong ΔΔABC vuông tại A theo định lí Pitago ta có ;
CB=√32+42=5(cm)CB=32+42=5(cm)
Diện tích xung quanh của lăng trụ :
(3 + 4 + 5).6 = 72(cm2)
b) Diện tích mặt đáy là :
12⋅3⋅4=6(cm2)12⋅3⋅4=6(cm2)
Thể tích của lăng trụ là:
6 x 6 = 36(cm2)
A G K C D E B H F M a
a) Giả sử M là trung điểm của BC, \(\Delta ABM\) là tam giác đều nên \(\widehat{ABC}=60^o.\)
Từ đó suy ra: \(\widehat{BCA}=30^o\). Theo định lí Py-ta-go, ta có:
AC = \(\sqrt{BC^2-AB^2}\)
AC = \(\sqrt{4a^2-a^2}=a\sqrt{3}.\)
Do đó, ta có:
SABC = \(\dfrac{1}{2}AB.AC=\dfrac{1}{2}a^2\sqrt{3}.\) (1)
b) Vì \(\widehat{FAB}=\widehat{ABC}=60^o\) nên FA // BC (hai góc so le trong), từ đó suy ra FA vuông góc với BE và CG.
Gọi giao điểm của FA và BE là H, giao điểm của FA và CG là K. Ta có:
SFAG = \(\dfrac{1}{2}FA.GK=\dfrac{1}{2}a.\dfrac{a\sqrt{3}}{2}=\dfrac{1}{4}a^2\sqrt{3},\) (2)
SFBE = \(\dfrac{1}{2}BE.FH=\dfrac{1}{2}.2a.\dfrac{a}{2}=\dfrac{1}{2}a^2.\) (3)
c) SBDCE = 4a2, (4)
SABF = \(\dfrac{1}{4}a^2\sqrt{3},\) (5)
SACG = \(\dfrac{3}{4}a^2\sqrt{3}.\) (6)
Từ (1), (2), (3), (4), (5), (6), ta có:
SDEFG = \(\dfrac{a^2}{4}\left(18+7\sqrt{3}\right)\approx7,53a^2.\)
gọi \(x\) là độ dài cạnh góc vuông bé hơn \((x>0)\)
cạnh góc vuông lớn hơn là \(\frac{4x}{3}\)
diện tích tam giác vuông ban đầu là \((x\times\frac{4x}{3})\div2=\frac{2x^2}{3}\)
theo đề ra ta có phương trình
\((\frac{4x}{3}-2)\times x=\frac{2x^2}{3}\times75\div100\)
giải phương trình ta được \(\orbr{\begin{cases}x=0(ktm)\\x=2,4\end{cases}}\)
\(S=\dfrac{3\cdot4}{2}=6\left(cm^2\right)\)
\(AM=\dfrac{BC}{2}=\dfrac{\sqrt{AB^2+AC^2}}{2}=\dfrac{\sqrt{3^2+4^2}}{2}=2.5\left(cm\right)\)
Diện tích tg ABC là :
\(\frac{1}{2}.AC.AB=\frac{1}{2}.7.6=21\left(cm^2\right)\)
Vậy:........
#H
`S` của tam giác đó là :
` (4.3)/2 =6 ( cm ) `
tính diện tích hình tam giác vuông
\(\left(4\times3\right):2=6\left(cm\right)\)