K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Lời giải:

PT hoành độ giao điểm:

\(-x^3+3x^2-2-(-x-2)=0\)

\(\Leftrightarrow -x^3+3x^2+x=0\)

\(\Leftrightarrow \left[\begin{matrix} x=0\\ x=\frac{3-\sqrt{13}}{2}\\ x=\frac{3+\sqrt{13}}{2}\end{matrix}\right.\)

Vậy diện tích hình phẳng giới hạn bởi 2 ĐTHS là:

\(S=\int ^{\frac{3+\sqrt{13}}{2}}_{0}|-x^3+3x^2+x|dx+\int ^0_{\frac{3-\sqrt{13}}{2}}|-x^3+3x^2+x|dx\)

\(S=\int ^{\frac{3+\sqrt{13}}{2}}_{0}(-x^3+3x^2+x)dx+\int ^0_{\frac{3-\sqrt{13}}{2}}(x^3-3x^2-x)dx=\frac{47}{4}\) (đơn vị diện tích)

2 tháng 9 2019

NV
22 tháng 3 2022

Phương trình hoành độ giao điểm:

\(2x^3-3x^2+1=x^3-4x^2+2x+1\)

\(\Leftrightarrow x^3+x^2-2x=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\\x=1\end{matrix}\right.\)

Trên \(\left(-2;0\right)\) ta có \(x^3+x^2-2x>0\) và trên \(\left(0;1\right)\) ta có \(x^3+x^2-2x< 0\)

Do đó:

\(S=\int\limits^0_{-2}\left(x^3+x^2-2x\right)dx-\int\limits^1_0\left(x^3+x^2-2x\right)dx=\dfrac{8}{3}+\dfrac{5}{12}=\dfrac{37}{12}\)

28 tháng 10 2017

Tìm hoành độ các giao điểm của hai đồ thị, ta có:

x 3 - x = x - x 3 <=> x 3 + x 2 - 2 x = 0

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy diện tích của hình phẳng tính là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án B.

20 tháng 3 2019

Đáp án A

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:
PT hoành độ giao điểm của 2 ĐTHS:

$x^2-4-(2x-4)=0\Leftrightarrow x^2-2x=0\Leftrightarrow x=0$ hoặc $x=2$

Diện tích hình phẳng giới hạn bởi 2 ĐTHS là:

\(\int ^2_0|x^2-4-(2x-4)|dx=\int ^2_0|x^2-2x|dx=\int ^2_0(2x-x^2)dx=\frac{4}{3}\)

7 tháng 5 2018

Đáp án là A

5 tháng 11 2019

Chọn B

Phương trình hoành độ giao điểm : 

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

12 tháng 2 2017

Chọn D.

Giải PT : e x = 2 ⇔ x = ln 2  Diện tích hình phẳng cần tìm là :

7 tháng 5 2018

Ta có trên [-2;0] , x 3 ≤ 0 . Trên [0; 2],  x 3 ≥ 0

Chọn C