Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm:
\(2x^3-3x^2+1=x^3-4x^2+2x+1\)
\(\Leftrightarrow x^3+x^2-2x=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\\x=1\end{matrix}\right.\)
Trên \(\left(-2;0\right)\) ta có \(x^3+x^2-2x>0\) và trên \(\left(0;1\right)\) ta có \(x^3+x^2-2x< 0\)
Do đó:
\(S=\int\limits^0_{-2}\left(x^3+x^2-2x\right)dx-\int\limits^1_0\left(x^3+x^2-2x\right)dx=\dfrac{8}{3}+\dfrac{5}{12}=\dfrac{37}{12}\)
Tìm hoành độ các giao điểm của hai đồ thị, ta có:
x 3 - x = x - x 3 <=> x 3 + x 2 - 2 x = 0
Vậy diện tích của hình phẳng tính là
Vậy chọn đáp án B.
Lời giải:
PT hoành độ giao điểm của 2 ĐTHS:
$x^2-4-(2x-4)=0\Leftrightarrow x^2-2x=0\Leftrightarrow x=0$ hoặc $x=2$
Diện tích hình phẳng giới hạn bởi 2 ĐTHS là:
\(\int ^2_0|x^2-4-(2x-4)|dx=\int ^2_0|x^2-2x|dx=\int ^2_0(2x-x^2)dx=\frac{4}{3}\)
Chọn D.
Giải PT : e x = 2 ⇔ x = ln 2 Diện tích hình phẳng cần tìm là :
Lời giải:
PT hoành độ giao điểm:
\(-x^3+3x^2-2-(-x-2)=0\)
\(\Leftrightarrow -x^3+3x^2+x=0\)
\(\Leftrightarrow \left[\begin{matrix} x=0\\ x=\frac{3-\sqrt{13}}{2}\\ x=\frac{3+\sqrt{13}}{2}\end{matrix}\right.\)
Vậy diện tích hình phẳng giới hạn bởi 2 ĐTHS là:
\(S=\int ^{\frac{3+\sqrt{13}}{2}}_{0}|-x^3+3x^2+x|dx+\int ^0_{\frac{3-\sqrt{13}}{2}}|-x^3+3x^2+x|dx\)
\(S=\int ^{\frac{3+\sqrt{13}}{2}}_{0}(-x^3+3x^2+x)dx+\int ^0_{\frac{3-\sqrt{13}}{2}}(x^3-3x^2-x)dx=\frac{47}{4}\) (đơn vị diện tích)