Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chu vi = 1 => a+b+c=1
viết lại đẳng thức: a/(a+b+c-a)+ b/(a+b+c-b) + c/(a+b+c-c) = 3/2
<=>a/b+c + b/c+a + c/a+b = 3/2
cộng 3 vào 2 vế rút ra được (a+b+c)(1/a+b + 1/b+c + 1/c+a ) = 9/2
<=>1/(a+b)+1/(b+c)+1/(c+a)=9/2(do a+b+c=1)
Sử dụng bđt Schwarz : 1/(a+b)+1/(b+c)+1/(c+a) >/ (1+1+1)2/2(a+b+c) = 9/2
đẳng thức xảy ra <=> a+b=b+c=c+a <=> a=b=c ta có đpcm
a. trong tam giác đều đường cao cũng là đường trung tuyến nen:
M;N lần lượt là trung điểm của ac và ab
+
=> AM LÀ dường trung bình của tam giác abc
=>AM//BC hay MNBC là hình thang 1
Do AB là tam giác đều nên BN=CM 2
TỪ 1 và 2 suy ra MNBC LÀ HÌNH THANG CÂN ( đpcm)
b.
do tam giác ABC dều nên AB=BC=AC=24:3=8 dm
=> MN=4 ; MB=4; NC=4
CHU VI HÌNH THANG LÀ:
4+4+4+8=20(dm)
Câu 1. B) m ≠ ±3
Câu 2. B) 3
Câu 3. C) 8cm
Câu 4. C) AB.DF = AC.DE
Câu 5. B) AC = 6cm
không hiểu chỗ nào ib mình giảng
a: Xét ΔADE và ΔACB có
AD/AC=AE/AB
góc A chung
=>ΔADE đồng dạng với ΔACB
=>DE/CB=AD/AC=1/3
=>DE/18=1/3
=>DE=6cm
b: Xét ΔFEC và ΔFBD có
góc FEC=góc FBD
góc F chung
=>ΔFEC đồng dạng vơi ΔFBD
Cạnh của tam giác đều là: AB = BC = CA = 18 : 3 = 6(cm)
Gọi AH là đường cao kẻ từ đỉnh A của tam giác ABC
Khi đó AH vừa là đường cao vừa là đường trung tuyến của tam giác đều ABC.
Suy ra BH = HC = BC = 1 2 .6 = 3(cm)
Áp dụng định lý Py-ta-go trong tam giác vuông AHB ta có:
AH = A B 2 − B H 2 = 6 2 − 3 2 = 27 = 3 3 (cm)
Diện tích tam giác đều là:
SABC = A H . B C 2 = 3 3 .6 2 = 9 3 (cm2)
Đáp án cần chọn là: C