Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x^3+y^3+z^3-3xyz}{xy^2+xz\left(2y+z\right)}.\dfrac{x\left(x+y\right)+y\left(x-xy\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2}\\ =\dfrac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)}{xy^2+2xyz+x^2z}.\dfrac{x^2+xy-xy-xy^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\\ =\dfrac{\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]}{2xy^2+4xyz+2x^2z}.\dfrac{x^2-xy^2}{\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2}\\ =\dfrac{\left(x+y+z\right)\left(x^2-xy\right)}{2xy^2+4xy+2x^2z}\)
@@ ko ra nữa
d)
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+.....+\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)=\(\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+.....-\dfrac{1}{x+99}+\dfrac{1}{x+100}\)=\(\dfrac{1}{x}-\dfrac{1}{x+100}\)
=\(\dfrac{x+100}{x\left(x+100\right)}-\dfrac{x}{x\left(x+100\right)}\)
=\(\dfrac{x+100-x}{x\left(x+100\right)}=\dfrac{100}{x\left(x+100\right)}\)
\(\dfrac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\dfrac{y^2-xz}{\left(y+z\right)\left(x+y\right)}+\dfrac{z^2-xy}{\left(x+z\right)\left(z+y\right)}\)
\(=\dfrac{\left(x^2-yz\right)\left(y+z\right)+\left(y^2-xz\right)\left(x+z\right)+\left(z^2-xy\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\left\{{}\begin{matrix}\left(x^2-yz\right)\left(y+z\right)=x^2y+x^2z-y^2z-yz^2\\\left(y^2-xz\right)\left(x+z\right)=y^2x+y^2z-x^2z-xz^2\\\left(z^2-xy\right)\left(x+y\right)=z^2x+z^2y-x^2y-xy^2\end{matrix}\right.\)
Đa thức trên bằng 0
\(\dfrac{x^2}{\left(x-y\right)\left(x-z\right)}+\dfrac{y^2}{\left(y-x\right)\left(y-z\right)}+\dfrac{z^2}{\left(z-x\right)\left(z-y\right)}\)
\(=\dfrac{-x^2}{\left(x-y\right)\left(z-x\right)}+\dfrac{-y^2}{\left(x-y\right)\left(y-z\right)}+\dfrac{-z^2}{\left(z-x\right)\left(y-z\right)}\)
\(=\dfrac{-x^2\left(y-z\right)-y^2\left(z-x\right)-z^2\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
Xét: \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(=x^2y-x^2z+y^2z-xy^2+z^2\left(x-y\right)\)
\(\)\(=xy\left(x-y\right)-z\left(x^2-y^2\right)+z^2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-xz-yz+z^2\right)\)
\(=\left(x-y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]\)
\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\)
Thêm dấu - đằng trc nữa suy ra bt có giá trị bằng 1 :P
Câu a:
Xét tử số:
\(x^3-y^3+z^3+3xyz=(x-y)^3+3xy(x-y)+z^3+3xyz\)
\(=(x-y)^3+z^3+3xy(x-y+z)\)
\(=(x-y+z)[(x-y)^2-z(x-y)+z^2]+3xy(x-y+z)\)
\(=(x-y+z)(x^2+y^2+z^2-2xy-xz+yz)+3xy(x-y+z)\)
\(=(x-y+z)(x^2+y^2+z^2+xy+yz-xz)\)
Xét mẫu số:
\((x+y)^2+(y+z)^2+(z-x)^2\)
\(x^2+2xy+y^2+y^2+2yz+z^2+z^2-2zx+x^2\)
\(2(x^2+y^2+z^2+xy+yz-xz)\)
Do đó: \(\frac{x^3-y^3+z^3+3xyz}{(x+y)^2+(y+z)^2+(z-x)^2}=\frac{x-y+z}{2}\)
Câu b:
Xét tử số:
\((x^2-y)(y+1)+x^2y^2-1\)
\(=x^2y+x^2-y^2-y+x^2y^2-1\)
\(=(x^2y-y)+(x^2-1)+(x^2y^2-y^2)\)
\(=y(x^2-1)+(x^2-1)+y^2(x^2-1)=(x^2-1)(y^2+y+1)\)
Xét mẫu số:
\((x^2+y)(y+1)+x^2y^2+1\)
\(=x^2y+x^2+y^2+y+x^2y^2+1\)
\(=(x^2y+y)+(x^2+1)+(x^2y^2+y^2)\)
\(=y(x^2+1)+(x^2+1)+y^2(x^2+1)\)
\(=(x^2+1)(y+1+y^2)\)
Do đó:
\(\frac{(x^2-y)(y+1)+x^2y^2-1}{(x^2+y)(y+1)+x^2y^2+1}=\frac{(x^2-1)(y^2+y+1)}{(x^2+1)(y^2+y+1)}=\frac{x^2-1}{x^2+1}\)
a) xy(x + y) + yz(y + z) + xz(z + x) + 3xyz
= xy(X + y + z) + yz(x + y + z) + xz(X + y + z)
= (x + y +z)(xy + yz+ xz)
b) xy(x + y) - yz(y + z) - xz(z - x)
= x2y + xy2 - y2z - yz2 - xz2 + x2z
= x2(y + z) - yz(y + z) + x(y2 - z2)
= x2(y + z) - yz(y + z) + x(y + z)(y - z)
= (y + z)(x2 - yz + xy - xz)
= (y + z)[x(x + y) - z(x + y)]
= (y + z)(x + y)(x - z)
c) x(y2 - z2) + y(z2 - x2) + z(x2 - y2)
= x(y - z)(y + z) + yz2 - yx2 + x2z - y2z
= x(y - z)(y + z) - yz(y - z) - x2(y - z)
= (y - z)((xy + xz - yz - x2)
= (y - z)[x(y - x) - z(y - x)]
= (y - z)(x - z)(y -x)
\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)
\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)
\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)