Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sua lai cho
\(=\)\(13.4\left(58+32+10\right)\)
\(=52.100\)
\(=5200\)
thong cam tai mk mat kem
Các bạn không cần trả lời câu hỏi trên của mik vì mik đã hiểu rồi nha . Cho nên đừng trả lời ! OK
Ta có:\(\dfrac{\dfrac{5}{12}+\dfrac{3}{4}-1}{3-\dfrac{5}{6}+\dfrac{2}{3}}=\dfrac{\dfrac{5}{12}+\dfrac{9}{12}-\dfrac{12}{12}}{\dfrac{18}{6}-\dfrac{5}{6}+\dfrac{4}{6}}=\dfrac{1}{6}:\dfrac{17}{6}=\dfrac{1}{17}\)
Ta có\(\dfrac{\dfrac{16}{5}+\dfrac{16}{7}-\dfrac{16}{9}}{\dfrac{17}{5}+\dfrac{17}{7}-\dfrac{17}{9}}=\dfrac{16\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}\right)}{17\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}\right)}=\dfrac{16}{17}\)
Ta có:A=\(\dfrac{1}{17}+\dfrac{16}{17}=\dfrac{17}{17}=1\)
Vậy gt bt A=1
\(a,\left(x+3\right)\left(y+2\right)=1\)
=> x+3 và y+2 thuộc UC(1)={1; -1}
x+3 | 1 | -1 |
x | -2 | -4 |
y+2 | 1 | -1 |
y | -1 | -3 |
Vậy x=-2; y=-4
x=-1; y=-4
Câu sau tương tự
\(a,\left(x+3\right)\left(y+2\right)=1\)
Th1 : \(\hept{\begin{cases}x+3=1\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)
KL : \(\left\{\left(x=-2;y=-1\right);\left(x=-4;y=-3\right)\right\}\)
\(d,3x+4y-xy=16\)
\(=3x-xy+4y-12=4\)
\(\Rightarrow-x\left(y-3\right)+4\left(y-3\right)=4\)
\(\Rightarrow\left(y-3\right)\left(4-x\right)=4\)
Chia các trường hợp như câu a của chị ra em nhé
A=\(\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-3}\)
A=\(\left(\dfrac{2}{7}+\dfrac{11}{7}+\dfrac{1}{7}\right)+\left(\dfrac{1}{3}+\dfrac{5}{-3}\right)+\dfrac{-3}{8}\)
A=\(2+\dfrac{-4}{3}+\dfrac{-3}{8}\)
A=\(\dfrac{7}{24}\)
B=\(\left(\dfrac{3}{17}+\dfrac{14}{17}\right)+\left(\dfrac{-18}{35}+\dfrac{17}{-35}\right)+\left(\dfrac{-5}{13}+\dfrac{-8}{13}\right)\)
B=\(\dfrac{17}{17}+\dfrac{-35}{35}+\dfrac{-13}{13}\)
B=\(1+\left(-1\right)+\left(-1\right)=-1\)
C=\(\dfrac{-3}{17}+\left(\dfrac{2}{3}+\dfrac{3}{17}\right)\)
C=\(\dfrac{-3}{17}+\dfrac{2}{3}+\dfrac{3}{17}=\left(\dfrac{-3}{17}+\dfrac{3}{17}\right)+\dfrac{2}{3}\)
C=0+\(\dfrac{2}{3}=\dfrac{2}{3}\)
D=\(\left(\dfrac{-1}{6}+\dfrac{5}{-12}\right)+\dfrac{7}{12}\)
D=\(\dfrac{-1}{6}+\dfrac{5}{-12}+\dfrac{7}{12}\)
D=\(\dfrac{-2}{12}+\dfrac{-5}{12}+\dfrac{7}{12}=\left(\dfrac{-2}{12}+\dfrac{-5}{12}\right)+\dfrac{7}{12}\)
D=\(\dfrac{-7}{12}+\dfrac{7}{12}=0\)
\(\dfrac{x}{6}=\dfrac{3}{5}+\dfrac{\left(-17\right)}{30}< =>\dfrac{5x}{30}=\dfrac{18}{30}+\dfrac{\left(-17\right)}{30}=>5x=18-17=1< =>x=\dfrac{1}{5}\)
\(K=\dfrac{9-5}{3}+\dfrac{2.9-5}{3^2}+\dfrac{3.9-5}{3^3}+...+\dfrac{101.9-5}{3^{101}}\)
\(K=\dfrac{9}{3}+\dfrac{2.9}{3^2}+\dfrac{3.9}{3^3}+...+\dfrac{101.9}{3^{101}}-5\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\right)\)
\(K=9\left(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{101}{3^{101}}\right)-5\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\right)\)
\(K=9A-5B\)
Xét \(A=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{101}{3^{101}}\) (1)
\(\Rightarrow\dfrac{1}{3}A=\dfrac{1}{3^2}+\dfrac{2}{3^3}+\dfrac{3}{3^4}+...+\dfrac{100}{3^{101}}+\dfrac{101}{3^{102}}\) (2)
Trừ vế với vế (1) cho (2):
\(\dfrac{2}{3}A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}-\dfrac{101}{3^{102}}=B-\dfrac{101}{3^{102}}\)
\(\Rightarrow A=\dfrac{3}{2}\left(B-\dfrac{101}{3^{102}}\right)\Rightarrow K=\dfrac{27}{2}\left(B-\dfrac{101}{3^{102}}\right)-5B\)
\(\Rightarrow K=\dfrac{17}{2}B-\dfrac{27}{2}.\dfrac{101}{3^{102}}\)
Xét \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\)
\(\Rightarrow3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{90}}+\dfrac{1}{3^{100}}\)
\(\Rightarrow3B-1+\dfrac{1}{3^{101}}=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}=B\)
\(\Rightarrow2B=1-\dfrac{1}{3^{101}}\Rightarrow B=\dfrac{1}{2}-\dfrac{1}{2}.\dfrac{1}{3^{101}}\)
\(\Rightarrow K=\dfrac{17}{2}\left(\dfrac{1}{2}-\dfrac{1}{2}.\dfrac{1}{3^{101}}\right)-\dfrac{27}{2}.\dfrac{101}{3^{102}}\)
\(\Rightarrow K=\dfrac{17}{4}-\dfrac{1}{3^{101}}\left(\dfrac{17}{4}+\dfrac{27.101}{6}\right)< \dfrac{17}{4}\) (đpcm)
Bài 1:
a: \(A=\dfrac{1\left(\dfrac{1}{13}-\dfrac{1}{17}-\dfrac{1}{23}\right)}{2\left(\dfrac{1}{13}-\dfrac{1}{17}-\dfrac{1}{23}\right)}\cdot\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}+\dfrac{6}{7}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{7}+\dfrac{6}{7}=\dfrac{1}{7}+\dfrac{6}{7}=1\)
b: \(B=2000:\left[\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}\cdot\dfrac{-\dfrac{7}{6}+\dfrac{7}{8}-\dfrac{7}{10}}{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}\right]\)
\(=2000:\left[\dfrac{2}{7}\cdot\dfrac{-7}{2}\right]=-2000\)
c: \(C=10101\cdot\left(\dfrac{5}{111111}+\dfrac{1}{111111}-\dfrac{4}{111111}\right)\)
\(=10101\cdot\dfrac{2}{111111}=\dfrac{2}{11}\)