Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.D=4a(3+b)+a*2a-3ab=12a+4ab+2a2-3ab=2a2+ab+12a=a(2a+b+12)
b.bạn viết đề kiểu j vậy
Mình lười nên k ghi dấu góc nhá, thông cảm
Xét tứ giác ABCD có \(A+B+C+D=360^0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{D}{4}=\frac{A+B+C+D}{1+2+3+4}=\frac{360^0}{10}=36^0\)
=> \(A=36^0;B=72^0;C=108^0;D=144^0\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\) (định lí tổng 4 góc trong một tứ giác)
Lại có: \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\widehat{\frac{C}{3}}=\widehat{\frac{D}{4}}\) (giả thiết)
Tính chất dãy tỉ số bằng nhau:
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\widehat{\frac{C}{3}}=\widehat{\frac{D}{4}}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\frac{360}{10}=36\)
\(\Rightarrow\widehat{A}=36^o.1=36^o;\widehat{B}=36^o.2=72^o;\widehat{C}=36^o.3=108^o;\widehat{D}=36^o.4=144^o\)
1. Ta có:
\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)
\(=\frac{2}{x}-\frac{1}{x+2014}\)
\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)
\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)
2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1
b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)
A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)
A = \(x-1+x+1-3\)
A = \(2x-3\)
c) Với x = 3 => A = 2.3 - 3 = 3
c) Ta có: A = -2
=> 2x - 3 = -2
=> 2x = -2 + 3 = 1
=> x= 1/2
Vì abcd=1 nên : a=1 ;b=1;c=1;d=1
thay số vào pt ta đc : \(\frac{1}{1+2\cdot1+3\cdot1\cdot1+4\cdot1\cdot1}\)+ \(\frac{1}{2+3\cdot1+4\cdot1\cdot1+1\cdot1\cdot1}\)+ \(\frac{1}{3+4\cdot1+1\cdot1+2\cdot1\cdot1\cdot1}\)+ \(\frac{1}{4+1+2\cdot1\cdot1+3\cdot1\cdot1\cdot1}\)
Tương đương : \(\frac{1}{10}\)+\(\frac{1}{10}\)+\(\frac{1}{10}\)+\(\frac{1}{10}\)= \(\frac{4}{10}\)=\(\frac{2}{5}\)
\(=\frac{\left[\left(1502-1\right)\left(1502+1\right)\right]\left[\left(1499+1\right)\left(1499-1\right)\right]}{6002}\)
\(=\frac{\left(1502^2-1\right)-\left(1499^2-1\right)}{6002}=\frac{2256003-2247000}{6002}=\frac{9003}{6002}=1,5\)
\(D=\frac{1501.1503-1500.1498}{6002}\)
\(\Leftrightarrow D=\frac{\left(1502-1\right)\left(1502+1\right)-\left(1499+1\right)\left(1499-1\right)}{6002}\)
\(\Leftrightarrow D=\frac{1502^2-1-1499^2+1}{6002}\)
\(\Leftrightarrow D=\frac{\left(1502-1499\right)\left(1502+1499\right)}{6002}\)
\(\Leftrightarrow D=\frac{3.3001}{6002}=\frac{9003}{6002}=\frac{3}{2}\)