\(D=\frac{1501.1503-1500.1498}{6002}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2021

\(=\frac{\left[\left(1502-1\right)\left(1502+1\right)\right]\left[\left(1499+1\right)\left(1499-1\right)\right]}{6002}\)

\(=\frac{\left(1502^2-1\right)-\left(1499^2-1\right)}{6002}=\frac{2256003-2247000}{6002}=\frac{9003}{6002}=1,5\)

6 tháng 10 2021

\(D=\frac{1501.1503-1500.1498}{6002}\)

\(\Leftrightarrow D=\frac{\left(1502-1\right)\left(1502+1\right)-\left(1499+1\right)\left(1499-1\right)}{6002}\)

\(\Leftrightarrow D=\frac{1502^2-1-1499^2+1}{6002}\)

\(\Leftrightarrow D=\frac{\left(1502-1499\right)\left(1502+1499\right)}{6002}\)

\(\Leftrightarrow D=\frac{3.3001}{6002}=\frac{9003}{6002}=\frac{3}{2}\)

5 tháng 10 2021

hello 123-145=

26 tháng 4 2017

bình phương gt1 và gt2 và thay vào là ra bạn à

29 tháng 6 2019

a.D=4a(3+b)+a*2a-3ab=12a+4ab+2a2-3ab=2a2+ab+12a=a(2a+b+12)

b.bạn viết đề kiểu j vậy

29 tháng 6 2019

Ko sai đề nha bn

Mình lười nên k ghi dấu góc nhá, thông cảm

Xét tứ giác ABCD có \(A+B+C+D=360^0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{D}{4}=\frac{A+B+C+D}{1+2+3+4}=\frac{360^0}{10}=36^0\)

=> \(A=36^0;B=72^0;C=108^0;D=144^0\)

21 tháng 8 2021

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\) (định lí tổng 4 góc trong một tứ giác)

Lại có: \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\widehat{\frac{C}{3}}=\widehat{\frac{D}{4}}\) (giả thiết)

Tính chất dãy tỉ số bằng nhau:

\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\widehat{\frac{C}{3}}=\widehat{\frac{D}{4}}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\frac{360}{10}=36\)

\(\Rightarrow\widehat{A}=36^o.1=36^o;\widehat{B}=36^o.2=72^o;\widehat{C}=36^o.3=108^o;\widehat{D}=36^o.4=144^o\)

30 tháng 8 2020

a)

Dạng Chính Xác:

b)

Dạng Chính Xác:

1 tháng 12 2019

1. Ta có:

\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)

\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)

\(=\frac{2}{x}-\frac{1}{x+2014}\)

\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)

\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)

1 tháng 12 2019

2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1

b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)

A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)

A = \(x-1+x+1-3\)

A = \(2x-3\)

c) Với x = 3 => A = 2.3 - 3 = 3

c) Ta có: A = -2

=> 2x - 3 = -2

=> 2x = -2 + 3 = 1

=> x= 1/2

27 tháng 2 2017

Vì  abcd=1 nên : a=1 ;b=1;c=1;d=1

       thay số vào pt ta đc : \(\frac{1}{1+2\cdot1+3\cdot1\cdot1+4\cdot1\cdot1}\)\(\frac{1}{2+3\cdot1+4\cdot1\cdot1+1\cdot1\cdot1}\)\(\frac{1}{3+4\cdot1+1\cdot1+2\cdot1\cdot1\cdot1}\)\(\frac{1}{4+1+2\cdot1\cdot1+3\cdot1\cdot1\cdot1}\)

                    Tương đương : \(\frac{1}{10}\)+\(\frac{1}{10}\)+\(\frac{1}{10}\)+\(\frac{1}{10}\)\(\frac{4}{10}\)=\(\frac{2}{5}\)

                          

27 tháng 2 2017

a , b , c , d cũng có thể âm mà Long