\(\dfrac{1.2+2.3+3.4+...+20.21}{1+2-3-4+5+6-7-8+...+197+198-199-200+201}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

\(A=\frac{1\cdot2+2\cdot3+3\cdot4+...+20\cdot21}{1+2-3-4+5+6-7-8+...+197+198-199-200+201}\)     (1)

đặt \(B=1\cdot2+2\cdot3+3\cdot4+...+20\cdot21\)

\(3B=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+20\cdot21\cdot3\)

\(3B=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+20\cdot21\cdot\left(22-19\right)\)

\(3B=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+20\cdot21\cdot22-19\cdot20\cdot21\)

\(3B=20\cdot21\cdot22\)

\(B=\frac{20\cdot21\cdot22}{3}=3080\)    (2)

đặt \(C=1+2-3-4+5+6-7-8+...+197+197-199-200+201\)

\(C=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(197+198-199-200\right)+201\)

\(C=-4+\left(-4\right)+...+\left(-4\right)+201\)   có 50 số -4

\(C=-4\cdot50+201\)

\(C=-200+201\)

\(C=1\)    (3)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow A=\frac{B}{C}=\frac{30801}{1}=3080\)

5 tháng 4 2018

Còn nhớ Zoro ko ? 

17 tháng 3 2020

\(M=\left(1-\frac{1}{2}\right)-\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{6}\right)-....-\left(1-\frac{1}{200}\right)\)

\(M=-\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-.....-\frac{1}{200}\right)=-\frac{1}{2}\left(1-\frac{1}{2}+...-\frac{1}{100}\right)\)

Xét:

\(S=1-\frac{1}{2}+....-\frac{1}{100}.S=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+....+\frac{1}{100}\right)=\frac{1}{51}+...+\frac{1}{100}\)

\(\Rightarrow M=-\frac{1}{2}\left(\frac{1}{51}+....+\frac{1}{100}\right)\)

N:M=-2

15 tháng 7 2018

sao dễ thế

16 tháng 7 2018

dễ thì cậu làm đi

10 tháng 6 2017

1)Tính

a)\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+..........+\dfrac{1}{9.10}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}\)

\(=\dfrac{9}{10}\)

b)\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.........+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..............+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}\)

\(=\dfrac{99}{100}\)

2) tìm x

\(a\)) \(\dfrac{2}{5}+\dfrac{4}{5}x-\dfrac{7}{5}\)\(=\dfrac{9}{5}\)

\(\dfrac{4}{5}x+\dfrac{7}{5}=\dfrac{9}{5}-\dfrac{2}{5}\)

\(\dfrac{4}{5}x+\dfrac{7}{5}=\dfrac{7}{5}\)

\(\dfrac{4}{5}x=\dfrac{7}{5}-\dfrac{7}{5}\)

\(\dfrac{4}{5}x=0\)

\(x=0:\dfrac{4}{5}\)

\(x=0\)

b)\(\dfrac{2}{5}x-\dfrac{6}{4}=\dfrac{8}{5}\)

\(\dfrac{2}{5}x=\dfrac{8}{5}+\dfrac{6}{4}\)

\(\dfrac{2}{5}x=\dfrac{31}{10}\)

\(x=\dfrac{31}{10}:\dfrac{2}{5}\)

\(x=\dfrac{31}{4}\)

10 tháng 6 2017

1. Tính:

a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\)

= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

= \(\dfrac{1}{1}-\dfrac{1}{10}\)

= \(\dfrac{10}{10}-\dfrac{1}{10}\)

= \(\dfrac{9}{10}\)

b. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

= \(\dfrac{1}{1}-\dfrac{1}{100}\)

= \(\dfrac{100}{100}-\dfrac{1}{100}\)

= \(\dfrac{99}{100}\)

2. Tìm x, biết:

a. \(\dfrac{2}{5}+\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{9}{5}\)

\(\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{9}{5}-\dfrac{2}{5}\)

\(\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{7}{5}\)

\(\dfrac{4}{5}x=\dfrac{7}{5}+\dfrac{7}{5}\)

\(\dfrac{4}{5}x=\dfrac{14}{5}\)

\(x=\dfrac{14}{5}:\dfrac{4}{5}\)

\(x=\dfrac{14}{5}.\dfrac{5}{4}\)

\(x=14.\dfrac{1}{4}\)

\(x=\dfrac{14}{4}\)

Vậy \(x=\dfrac{14}{4}\)

b. \(\dfrac{2}{5}x-\dfrac{6}{4}=\dfrac{8}{5}\)

\(\dfrac{2}{5}x=\dfrac{8}{5}+\dfrac{6}{4}\)

\(\dfrac{2}{5}x=\dfrac{32}{20}+\dfrac{30}{20}\)

\(\dfrac{2}{5}x=\dfrac{62}{20}\)

\(\dfrac{2}{5}x=\dfrac{31}{10}\)

\(x=\dfrac{31}{10}:\dfrac{2}{5}\)

\(x=\dfrac{31}{10}.\dfrac{5}{2}\)

\(x=\dfrac{31}{2}.\dfrac{2}{2}\)

\(x=\dfrac{31}{2}.1\)

\(x=\dfrac{31}{2}\)

Vậy \(x=\dfrac{31}{2}\)

bài này mk tự làm ko sao chép trên mạnghihi

nếu thấy đúng thì tick đúng cho mk nhavui

2 tháng 3 2018

a, tổng các tử và mẫu mỗi phân sô trên đều bằng 200

b, \(A=\dfrac{1}{199}+\dfrac{2}{198}+\dfrac{3}{197}+...+\dfrac{198}{2}+\dfrac{199}{1}\)

\(A=\dfrac{200}{199}+\dfrac{200}{198}+...+\dfrac{200}{2}+\dfrac{200}{200}\)

\(A=200\left(\dfrac{1}{199}+\dfrac{1}{198}+...+\dfrac{1}{2}+\dfrac{1}{200}\right)\)(đpcm)

i don't now

mong thông cảm !

...........................

16 tháng 3 2017

Ta có :

\(\dfrac{1}{199}+\dfrac{2}{198}+...+\dfrac{198}{2}+\dfrac{199}{1}\)

\(=\left(\dfrac{1}{199}+1\right)+\left(\dfrac{2}{198}+1\right)+...+\left(\dfrac{198}{2}+1\right)\left(\dfrac{199}{1}+1\right)-199\)\(=\dfrac{200}{199}+\dfrac{200}{199}+...+\dfrac{200}{2}+200-199\)

\(=\dfrac{200}{199}+\dfrac{200}{198}+...+\dfrac{200}{2}+\dfrac{200}{200}\)

\(=200\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{200}\right)\)

\(=200.A\)

\(\Rightarrow\dfrac{A}{B}=\dfrac{1}{200}\)

22 tháng 3 2017

mik chưa hiểu đoạn đầu bạn có thể ns rõ hơn k?