K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
12 tháng 3 2022

\(m=0\)dễ thấy không thỏa mãn. 

\(m\ne0\)

\(\Delta'=\left(m-1\right)^2-3\left(m-2\right).m=-2m^2+4m+1\)

Để phương trình đã cho có hai nghiệm \(x_1,x_2\)thì \(\Delta'\ge0\Rightarrow-2m^2+4m+1\ge0\).

Khi phương trình có hai nghiệm \(x_1,x_2\), theo Viete ta có:

\(\hept{\begin{cases}x_1+x_2=\frac{2\left(m-1\right)}{m}\\x_1x_2=\frac{3\left(m-2\right)}{m}\end{cases}}\)

Ta có: \(x_1+2x_2=1\)

\(\Rightarrow\left(x_1+2x_2-1\right)\left(x_2+2x_1-1\right)=0\)

\(\Leftrightarrow5x_1x_2+2\left(x_1^2+x_2^2\right)-3\left(x_1+x_2\right)+1=0\)

\(\Leftrightarrow2\left(x_1+x_2\right)^2-3\left(x_1+x_2\right)+x_1x_2+1=0\)

\(\Rightarrow2\left[\frac{2\left(m-1\right)}{m}\right]^2-\frac{6\left(m-1\right)}{m}+\frac{3\left(m-2\right)}{m}+1=0\)

\(\Leftrightarrow8\left(m-1\right)^2-6m\left(m-1\right)+3m\left(m-2\right)+m^2=0\)

\(\Leftrightarrow6m^2-16m+8=0\Leftrightarrow\orbr{\begin{cases}m=2\\m=\frac{2}{3}\end{cases}}\)

Thử lại đều thỏa mãn. 

12 tháng 3 2022

hok bé ơi

DD
7 tháng 11 2021

Bài 1: 

Kẻ \(OM\perp AB\)\(OM\)cắt \(CD\)tại \(N\).

Khi đó \(MN=8cm\).

TH1: \(AB,CD\)nằm cùng phía đối với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (1)

\(R^2=OA^2=OM^2+AM^2=\left(h+8\right)^2+\left(\frac{15}{2}\right)^2\)(2) 

Từ (1) và (2) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{9}{4}\).

TH2: \(AB,CD\)nằm khác phía với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (3)

\(R^2=OA^2=OM^2+AM^2=\left(8-h\right)^2+\left(\frac{15}{2}\right)^2\)(4)

Từ (3) và (4) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{-9}{4}\)(loại).

DD
7 tháng 11 2021

Bài 3: 

Lấy \(A'\)đối xứng với \(A\)qua \(Ox\), khi đó \(A'\)có tọa độ là \(\left(1,-2\right)\).

\(MA+MB=MA'+MB\ge A'B\)

Dấu \(=\)xảy ra khi \(M\)là giao điểm của \(A'B\)với trục \(Ox\).

Suy ra \(M\left(\frac{5}{3},0\right)\).

20 tháng 11 2021

a, \(\hept{\begin{cases}x^2+y^2+3xy=5\\\left(x+y\right)\left(x+y+1\right)+xy=7\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2+xy=5\\\left(x+y\right)\left(x+y+1\right)+xy=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-\left(x+y\right)\left(x+y+1\right)=-2\\\left(x+y\right)^2+xy=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)\left(x+y-x-y-1\right)=-2\\\left(x+y\right)^2+xy=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=2\\4+xy=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2-y\\4+\left(2-y\right)y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2-y\\2y-y^2-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2-y\\-\left(y^2-2y+1\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2-y\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)

Vậy hpt có nghiệm (x;y) = (1;1) 

20 tháng 11 2021

chào chị em lớp 7 ko bt làm

30 tháng 7 2021

Ta có : \(\frac{A}{B}\ge\frac{x}{4}+5\Leftrightarrow\sqrt{x}+4\ge\frac{x}{4}+5\)

\(\Leftrightarrow\frac{4\sqrt{x}+16}{4}-\frac{x}{4}-\frac{20}{4}\ge0\Leftrightarrow\frac{4\sqrt{x}-x-4}{4}\ge0\)

\(\Rightarrow-x+4\sqrt{x}-4\ge0\Leftrightarrow x-4\sqrt{x}+4\le0\)vì 4 > 0 

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2\le0\Leftrightarrow x\le4\)

Kết hợp với đk vậy \(0\le x\le4;x\ne1\)

19 tháng 8 2021

\(P=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right):\frac{\sqrt{x}}{x+\sqrt{x}}\)ĐK : x > 0 

\(=\left(\frac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\frac{1}{\sqrt{x}+1}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)

\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}=\frac{x-2\sqrt{x}+1}{x-1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

19 tháng 8 2021

bạn bổ sung đk hộ mình ý 2 là : \(x\ge0;x\ne1\)nhé 

22 tháng 7 2021

-11/abc