Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\left(2x-1\right)^{x+1}\Rightarrow\ln y=\ln\left(2x-1\right)^{x+1}=\left(x+1\right)\ln\left(2x-1\right)\) (*)
\(\Rightarrow\frac{y'}{y}=\ln\left(2x-1\right)+\frac{2\left(x+1\right)}{2x-1}\) (đạo hàm 2 vế của (*)
\(\Rightarrow y'=\left[\ln\left(2x-1\right)+\frac{2\left(x+1\right)}{2x-1}\right]\left(2x-1\right)^{x+1}\)
a) Cách 1: y' = (9 -2x)'(2x3- 9x2 +1) +(9 -2x)(2x3- 9x2 +1)' = -2(2x3- 9x2 +1) +(9 -2x)(6x2 -18x) = -16x3 +108x2 -162x -2.
Cách 2: y = -4x4 +36x3 -81x2 -2x +9, do đó
y' = -16x3 +108x2 -162x -2.
b) y' = .(7x -3) +(7x -3)'= (7x -3) +7.
c) y' = (x -2)'√(x2 +1) + (x -2)(√x2 +1)' = √(x2 +1) + (x -2) = √(x2 +1) + (x -2) = √(x2 +1) + = .
d) y' = 2tanx.(tanx)' - (x2)' = .
e) y' = sin = sin.
xét hàm số y=\(\sin\left(cos^2x\right)cos\left(sin^2x\right)\) =
\(\frac{sin\left(cos^2x+sin^2x\right)+sin\left(cos^2x-sin^2x\right)}{2}=\frac{sin1+sin\left(cós2x\right)}{2}\)
\(y'=\left(2x-2\right)e^x+\left(x^2-2x+2\right)e^x=x^2e^x\)
\(y=\log_x\left(2x+1\right)=\frac{\ln\left(2x+1\right)}{\ln x}\)
\(\Rightarrow y'=\frac{\frac{2}{2x+1}\ln x-\frac{1}{x}\ln\left(2x+1\right)}{\ln^2x}=\frac{2x\ln x-\left(2x+1\right)\ln\left(2x+1\right)}{x\left(2x+1\right)\ln^2x}\)