K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2017

Chọn C.

Áp dụng , với u = 2 + sin22x.

y' = 3(2 + sin22x)2(2 + sin22x)’ = 3(2 + sin22x)2(sin22x)’.

Tính (sin22x)’, áp dụng  với u = sin2x

(sin22x)’ = 2.sin2x(sin2x)’ = 2.sin2x.cos2x(2x)’ = 2sin4x.

y' = 6sin4x(2 + sin22x)2.

6 tháng 5 2019

Đáp án D

6 tháng 7 2018

Đáp án C

5 tháng 6 2017

24 tháng 8 2017

Ta có: 0 ≤ sin 2 x ≤ 1 ⇒ 1 ≤ 4 - 3 sin 2 x ≤ 4

* y = 1 ⇔ sin 2 x = 1 ⇔ cos x = 0 ⇔ x = π 2 + k π

* y = 4 ⇔ sin 2 x = 0 ⇔ x = k π

Vậy giá trị lớn nhất của hàm số bằng 4, giá trị nhỏ nhất bằng 1.

Chọn B

10 tháng 9 2023

a) \(y=\dfrac{4}{sin^22x-1}\)

Xác định khi và chỉ khi

\(sin^22x-1\ne0\)

\(\Leftrightarrow sin^22x\ne1\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x\ne1\\sin2x\ne-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x\ne sin\dfrac{\pi}{2}\\sin2x\ne sin\dfrac{3\pi}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x\ne\dfrac{\pi}{2}+k2\pi\\2x\ne\dfrac{3\pi}{2}+k2\pi\\2x\ne-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{4}+k\pi\\x\ne\dfrac{3\pi}{4}+k\pi\\x\ne-\dfrac{\pi}{4}+k\pi\end{matrix}\right.\) \(\Leftrightarrow x\ne\pm\dfrac{\pi}{4}+k\pi\)

Vậy tập xác định là \(D=R\)\\(\left\{\pm\dfrac{\pi}{4}+k\pi\right\}\)

 

2:

a: \(y=4+\left(cos^2x-sin^2x\right)+\left(cos^2x+sin^2x\right)\)

\(=4+1+cos2x=cos2x+5\)

-1<=cos2x<=1

=>-1+5<=cos2x+5<=1+5

=>4<=cos2x+5<=6

TGT là T=[4;6]

b: \(y=5-\dfrac{3}{2}\cdot2sinx\cdot cosx=-\dfrac{3}{2}sin2x+5\)

-1<=sin 2x<=1

=>-3/2<=-3/2sin2x<=3/2

=>-3/2+5<=y<=3/2+5

=>7/2<=y<=13/2

=>TGT là T=[7/2;13/2]

c: -1<=sin x<=1

=>-2<=-2sin x<=2

=>3<=-2sinx+5<=7

=>\(\dfrac{4}{3}>=\dfrac{4}{-2sinx+5}>=\dfrac{4}{7}\)

TGT là T=[4/7;4/3]

7 tháng 5 2019

15 tháng 1 2017

Chọn B

25 tháng 6 2019

10 tháng 9 2018