K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2023

tham khảo:

a)\(y'=xsin2x+sin^2x\)

\(y'=sin^2x+xsin2x\)

b)\(y'=-2sin2x+2cosx\\ y'=2\left(cosx-sin2x\right)\)

c)\(y=sin3x-3sinx\)

\(y'=3cos3x-3cosx\)

d)\(y'=\dfrac{1}{cos^2x}-\dfrac{1}{sin^2x}\)

\(y'=\dfrac{sin^2x-cos^2x}{sin^2x.cos^2x}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(a,y'=8x^3-9x^2+10x\\ \Rightarrow y''=24x^2-18x+10\\ b,y'=\dfrac{2}{\left(3-x\right)^2}\\ \Rightarrow y''=\dfrac{4}{\left(3-x\right)^3}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(c,y'=2cos2xcosx-sin2xsinx\\ \Rightarrow y''=-5sin\left(2x\right)cos\left(x\right)-4cos\left(2x\right)sin\left(x\right)\\ d,y'=-2e^{-2x+3}\\ \Rightarrow y''=4e^{-2x+3}\)

4 tháng 4 2017

Giải bài 2 trang 176 sgk Đại Số 11 | Để học tốt Toán 11

Giải bài 2 trang 176 sgk Đại Số 11 | Để học tốt Toán 11

Giải bài 2 trang 176 sgk Đại Số 11 | Để học tốt Toán 11

9 tháng 4 2017

a) y' = 5cosx -3(-sinx) = 5cosx + 3sinx;

b) = = .

c) y' = cotx +x. = cotx -.

d) + = = (x. cosx -sinx).

e) = = .

f) y' = (√(1+x2))' cos√(1+x2) = cos√(1+x2) = cos√(1+x2).

 

a: \(y'=4\cdot3x^2-3\cdot2x+2=12x^2-6x+2\)

b: \(y'=\dfrac{\left(x+1\right)'\left(x-1\right)-\left(x+1\right)\left(x-1\right)'}{\left(x-1\right)^2}=\dfrac{x-1-x-1}{\left(x-1\right)^2}=\dfrac{-2}{\left(x-1\right)^2}\)

c: \(y'=-2\cdot\left(\sqrt{x}\cdot x\right)'\)

\(=-2\cdot\left(\dfrac{x+x}{2\sqrt{x}}\right)=-2\cdot\dfrac{2x}{2\sqrt{x}}=-2\sqrt{x}\)

d: \(y'=\left(3sinx+4cosx-tanx\right)\)'

\(=3cosx-4sinx+\dfrac{1}{cos^2x}\)

e: \(y'=\left(4^x+2e^x\right)'\)

\(=4^x\cdot ln4+2\cdot e^x\)

f: \(y'=\left(x\cdot lnx\right)'=lnx+1\)

6 tháng 12 2016

mai đăng lại bài này nhé t làm cho h đi ngủ

6 tháng 12 2016

NV
4 tháng 5 2020

3.

\(f\left(x+\frac{\pi}{3}\right)=cos\left(x+\frac{\pi}{3}\right)\Rightarrow f'\left(x+\frac{\pi}{3}\right)=-sin\left(x+\frac{\pi}{3}\right)\)

\(f'\left(x-\frac{\pi}{6}\right)=-sin\left(x-\frac{\pi}{6}\right)\)

\(f'\left(0\right)=-sin\left(0\right)=0\)

\(2f'\left(x+\frac{\pi}{3}\right).f'\left(x-\frac{\pi}{6}\right)=2sin\left(x+\frac{\pi}{3}\right)sin\left(x-\frac{\pi}{6}\right)\)

\(=cos\left(\frac{\pi}{2}\right)-cos\left(2x+\frac{\pi}{6}\right)=-cos\left(2x+\frac{\pi}{6}\right)\)

\(f'\left(0\right)-f\left(2x+\frac{\pi}{6}\right)=0-cos\left(2x+\frac{\pi}{6}\right)=-cos\left(2x+\frac{\pi}{6}\right)\)

\(\Rightarrow2f'\left(x+\frac{\pi}{3}\right)f'\left(x-\frac{\pi}{6}\right)=f'\left(0\right)-f\left(2x+\frac{\pi}{6}\right)\) (đpcm)

4.

\(y=3\left(sin^4x+cos^4x\right)-2\left(sin^6x+cos^6x\right)\)

\(=3\left(sin^2x+cos^2x\right)^2-6sin^2x.cos^2x-2\left(sin^2x+cos^2x\right)^3+6sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(=3-2=1\)

\(\Rightarrow y'=0\) ; \(\forall x\)

5.

\(y=\left(\frac{sinx}{1+cosx}\right)^3=\left(\frac{sinx\left(1-cosx\right)}{1-cos^2x}\right)^3=\left(\frac{sinx\left(1-cosx\right)}{sin^2x}\right)^3=\left(\frac{1-cosx}{sinx}\right)^3\)

\(y'=3\left(\frac{1-cosx}{sinx}\right)^2\left(\frac{sin^2x-cosx\left(1-cosx\right)}{sin^2x}\right)=3\left(\frac{1-cosx}{sinx}\right)^2\left(\frac{1-cosx}{sin^2x}\right)=\frac{3\left(1-cosx\right)^3}{sin^4x}\)

\(\Rightarrow y'.sinx-3y=\frac{3\left(1-cosx\right)^3}{sin^3x}-3\left(\frac{1-cosx}{sinx}\right)^3=0\) (đpcm)

a: \(y'=\left(x^2+2x\right)'\left(x^3-3x\right)+\left(x^2+2x\right)\left(x^3-3x\right)'\)

\(=\left(2x+2\right)\left(x^3-3x\right)+\left(x^2+2x\right)\left(3x^2-3\right)\)

\(=2x^4-6x^2+2x^3-6x+3x^4-3x^2+6x^3-6x\)

\(=5x^4+8x^3-9x^2-12x\)

b: y=1/-2x+5 

=>\(y'=\dfrac{2}{\left(2x+5\right)^2}\)

c: \(y'=\dfrac{\left(4x+5\right)'}{2\sqrt{4x+5}}=\dfrac{4}{2\sqrt{4x+5}}=\dfrac{2}{\sqrt{4x+5}}\)

d: \(y'=\left(sinx\right)'\cdot cosx+\left(sinx\right)\cdot\left(cosx\right)'\)

\(=cos^2x-sin^2x=cos2x\)

e: \(y=x\cdot e^x\)

=>\(y'=e^x+x\cdot e^x\)

f: \(y=ln^2x\)

=>\(y'=\dfrac{\left(-1\right)}{x^2}=-\dfrac{1}{x^2}\)

17 tháng 8 2023

tham khảo:

a)\(y'\left(x\right)=5\left(\dfrac{2x-1}{x+2}\right)^4.\dfrac{\left(x+2\right)\left(2\right)-\left(2x-1\right).1}{\left(x+2\right)^2}\)

\(=\dfrac{10\left(2x-1\right)\left(x+2\right)^3}{\left(x+2\right)^4}=\dfrac{20x-50}{\left(x+2\right)^4}\)

b)\(y'\left(x\right)=\dfrac{2\left(x^2+1\right)-2x\left(2x\right)}{\left(x^2+1\right)^2}\)\(=\dfrac{2\left(1-x^2\right)}{\left(x^2+1\right)^2}\)

c)\(y'\left(x\right)=e^x.2sinxcosx+e^xsin^2x.2cosx\)

\(=2e^xsinx\left(cosx+sinxcosx\right)\)

\(=2e^xsinxcos^2x\)

d)\(y'\left(x\right)=\dfrac{1}{x\sqrt{x}}.\left(+\dfrac{1}{2\sqrt{x}}\right)\)

\(=\dfrac{1}{\sqrt{x}\left(2\sqrt{x}+\sqrt{x}+2\right)}\)

\(=\dfrac{1}{\sqrt{x}\left(3\sqrt{x}+2\right)}\)

NV
2 tháng 1

Coi như tất cả các biểu thức cần tính đạo hàm đều xác định.

1.

\(y'=2sin\sqrt{4x+3}.\left(sin\sqrt{4x+3}\right)'=2sin\sqrt{4x+3}.cos\sqrt{4x+3}.\left(\sqrt{4x+3}\right)'\)

\(=sin\left(2\sqrt{4x+3}\right).\dfrac{4}{2\sqrt{4x+3}}=\dfrac{2sin\left(2\sqrt{4x+3}\right)}{\sqrt{4x+3}}\)

2.

\(y'=3x^3+\dfrac{17}{x\sqrt{x}}\)

3.

\(y'=\dfrac{1}{2\sqrt{\dfrac{sin4x}{cos\left(x^2+2\right)}}}.\left(\dfrac{sin4x}{cos\left(x^2+2\right)}\right)'\)

\(=\dfrac{1}{2\sqrt{\dfrac{sin4x}{cos\left(x^2+2\right)}}}.\dfrac{4cos4x.cos\left(x^2+2\right)+2x.sin4x.sin\left(x^2+2\right)}{cos^2\left(x^2+2\right)}\)

NV
2 tháng 1

4.

\(y'=-\dfrac{\left(\sqrt{sin^2\left(6-x\right)+4x}\right)'}{sin^2\left(6-x\right)+4x}=-\dfrac{\left[sin^2\left(6-x\right)+4x\right]'}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}\)

\(=-\dfrac{2sin\left(6-x\right).\left[sin\left(6-x\right)\right]'+4}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}=-\dfrac{-2sin\left(6-x\right).cos\left(6-x\right)+4}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}\)

\(=\dfrac{sin\left(12-2x\right)-4}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}\)

5.

\(y'=sin^2\left(\dfrac{2x-1}{4-x}\right)+2x.sin\left(\dfrac{2x-1}{4-x}\right).\left[sin\left(\dfrac{2x-1}{4-x}\right)\right]'\)

\(=sin^2\left(\dfrac{2x-1}{4-x}\right)+2x.sin\left(\dfrac{2x-1}{4-x}\right).cos\left(\dfrac{2x-1}{4-x}\right).\left(\dfrac{2x-1}{4-x}\right)'\)

\(=sin^2\left(\dfrac{2x-1}{4-x}\right)+x.sin\left(\dfrac{4x-2}{4-x}\right).\dfrac{7}{\left(4-x\right)^2}\)