K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2015

Lí Bạch.

26 tháng 10 2015

Thuộc thể thơ thất ngôn bát cú Đường luật, tác giả là Lí Bạch

Đặt \(A=\frac{3-4X}{X^2+1}\)

Ta có: \(A=\frac{X^2-4X+4-\left(X^2+1\right)}{X^2+1}=\frac{\left(X-2\right)^2}{X^2+1}-1\ge-1\)

   (Vì \(\frac{\left(X-2\right)^2}{X^2+1}\ge0\))

\(\Rightarrow MinA=-1khiX=2\)

Ta có:\(A=\frac{4\left(X^2+1\right)-\left(4X^2+4+1\right)}{X^2+1}=4-\frac{\left(2X+1\right)^2}{X^2+1}\le4\)

   (Vì \(-\frac{\left(2X+1\right)^2}{X^2+1}\le0\))

\(\Rightarrow MaxA=4khiX=-\frac{1}{2}\)

Học tốt

26 tháng 10 2015

play game

26 tháng 11 2016

drawing

29 tháng 1 2016

thất ính tích em nhé

29 tháng 1 2016

7love = seven love = thất tình

31 tháng 1 2016

hay thì  

hông hay cug  

6 tháng 2 2016

Khi vẽ hình xong ta sẽ có cạnh.....................................

11 tháng 9 2018

A = 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/1.2

A = - (1/99.100 + 1/98.99 + 1/97.98 +... + 1/1.2)

A = - ( 1/99 - 1/100 + 1/98 - 1/99 + 1/97 - 1/98 +... + 1 - 1/2)

A = -(1 - 1/100)

A = -99/100

27 tháng 6 2019

Ta có:  A = \(\left|2x-2\right|+\left|2x-2013\right|\)

=> A = \(\left|2x-2\right|+\left|2013-2x\right|\)\(\ge\)\(\left|2x-2+2013-2x\right|=\left|2011\right|=2011\)

=> A \(\ge\)2011

Dấu "=" xảy ra <=> (2x - 2)(2013 - 2x) \(=\)0

         => \(2\left(x-1\right)\left(2013-2x\right)=0\)

     => \(\left(x-1\right)\left(2013-2x\right)=0\)

   =>  \(1\le x\le\frac{2013}{2}\)

Vậy Amin = 2011 <=> \(1\le x\le\frac{2013}{2}\)

27 tháng 6 2019

A = |2x - 2| + |2x - 2013| = |2x - 2| + |2013 - 2x| ≥ |2x - 2 + 2013 - 2x| = |2011| = 2011

Dấu "=" xảy ra <=> (2x - 2)(2013 - 2x) ≥ 0

<=> (2x - 2)(2x - 2013) ≤ 0

<=> 1 ≤ x ≤ 2013/2

Mà x là số nguyên ....

Vậy Amin = 2011 tại 1 ≤ x ≤ 2013/2

28 tháng 7 2019

D = -x2 - 5y2 + 4xy + 2y - 1 = -(x2 - 4xy + 4y2) - (y2 - 2y + 1) = -(x - y)2 - (y - 1)2

Ta có: -(x - y)2 \(\le\)\(\forall\)x;y

-(y - 1)2 \(\le\)\(\forall\)y

=> -(x - y)2 - (y - 1)2 \(\le\)\(\forall\)x;y

hay D \(\le\)\(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\y-1=0\end{cases}}\) <=> x = y = 1

Vậy Max của D = 0 tại x = y = 1