K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2023

\(D=\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)

\(\Rightarrow D=x^6-3x^4+3x^2-1-\left(x^6-1\right)\)

\(\Rightarrow D=-3x^4+3x^2=3x^2\left(1-x^2\right)\)

3 tháng 8 2023

loading...  

10 tháng 9 2021

\(a,=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4-x-x^2+x^3-x^4+x^5+1+x-x^2+x^3-x^4\\ =2x-2x^2+2x^3-2x^4\)

18 tháng 2 2022

a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)

=> x=-1  

với \(3x^2+x-2=0\)

ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)

Vậy  ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)

b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)

\(\Leftrightarrow3x^2=3\)

hay \(x\in\left\{1;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)

hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)

Bài 3: 

a: Ta có: \(\left(y-5\right)\left(y+8\right)-\left(y+4\right)\left(y-1\right)\)

\(=y^2+8y-5y-40-y^2+y-4y+4\)

=-36

b: Ta có: \(y^4-\left(y^2-1\right)\left(y^2+1\right)\)

\(=y^4-y^4+1\)

=1

Bài 2: 

a: \(\left(2a-b\right)\left(4a+b\right)+2a\left(b-3a\right)\)

\(=8a^2+2ab-4ab-b^2+2ab-6a^2\)

\(=2a^2-b^2\)

b: \(\left(3a-2b\right)\left(2a-3b\right)-6a\left(a-b\right)\)

\(=6a^2-9ab-4ab+6b^2-6a^2+6ab\)

\(=6b^2-7ab\)

c: \(5b\left(2x-b\right)-\left(8b-x\right)\left(2x-b\right)\)

\(=10bx-5b^2-16bx+8b^2+2x^2-xb\)

\(=3b^2-7xb+2x^2\)

11 tháng 12 2021

b: \(=x\left(x-3\right)\left(x^2+3x+9\right)\)

23 tháng 12 2022

a/ 2x^2 (x – 1) + 4x (1 – x)

= 2x^2(x  – 1) – 4x (x – 1)

= (x – 1)( 2x^2 – 4x)

=2x(x – 1)(x – 2)

 

28 tháng 12 2018

a)  x 2 - 1 4                   b)  x 2 - 9 y 2

c)  x 4 - 9                     d)  4 x 2 - 1

29 tháng 10 2023

a) \(\left(2x+3y\right)^2=\left(2x\right)^2+2\cdot2x\cdot3y+\left(3y\right)^2=4x^2+12xy+9y^2\)

b) \(\left(x+\dfrac{1}{4}\right)^2=x^2+2\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2=x^2+\dfrac{1}{2}x+\dfrac{1}{16}\)

c) \(\left(x^2+\dfrac{2}{5}y\right)\left(x^2-\dfrac{2}{5}y\right)=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2=x^4-\dfrac{4}{25}y^2\)

d) \(\left(2x+y^2\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y^2+3\cdot2x\cdot\left(y^2\right)^2+\left(y^2\right)^3=8x^3+12x^2y^2+6xy^4+y^6\)

e) \(\left(3x^2-2y\right)^2=\left(3x^2\right)^2-2\cdot3x^2\cdot2y+\left(2y\right)^2=9x^4-12x^2y+4y^2\)

f) \(\left(x+4\right)\left(x^2-4x+16\right)=x^3+4^3=x^3+64\)

g) \(\left(x^2-\dfrac{1}{3}\right)\cdot\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3=x^6-\dfrac{1}{27}\)