Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(139\frac{5}{7}:\frac{2}{3}−138\frac{2}{7}:\sqrt{\frac{4}{9}} \)
= \(139\frac{5}{7}:\frac{2}{3}−138\frac{2}{7}:\frac{2}{3}\)
= \((139\frac{5}{7}−138\frac{2}{7}):\frac{2}{3}\)
= \(1\frac{3}{7}:\frac{2}{3}\)
= \(2\frac{1}{7}\)
b, \((\frac{-5}{11}:\frac{13}{18}-\frac{5}{11}:\frac{13}{5})+\frac{-1}{33} \)
= \((\frac{5}{11}.\frac{-18}{13}-\frac{5}{11}.\frac{5}{13})+\frac{-1}{33}\)
= \([\frac{5}{11}.(\frac{-18}{13}-\frac{5}{13})]+\frac{-1}{33}\)
= \((\frac{5}{11}.\frac{-23}{13})+\frac{-1}{33}\)
= \(\frac{-155}{143}+\frac{-1}{33}\)
= \(\frac{-358}{429} \)
c, \(∣97\frac{2}{3}-125\frac{3}{5}∣+97\frac{2}{3}-125\frac{3}{5} \)
= \(∣\frac{-419}{15}∣+97\frac{2}{3}-125\frac{3}{5}\)
= \(\frac{419}{15}+97\frac{2}{3}-125\frac{3}{5}\)
= \(0\)
Tick cho mình nha!!!
Chúc bạn học tốt.
\(=\)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{2^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{3^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{5^3}\right)\)\(...\) \(\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\) \(\left(\frac{1}{125}-\frac{1}{1^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{2^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{3^3}\right)\) \(.\) \(0\) \(....\) \(\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\) \(0\)
Ta có: \(\left|97\dfrac{2}{3}-125\dfrac{3}{5}\right|+97\dfrac{2}{5}-125\dfrac{1}{3}\)
\(=\left|97+\dfrac{2}{3}-125-\dfrac{3}{5}\right|+97+\dfrac{2}{5}-125-\dfrac{1}{3}\)
\(=\left|-28+\dfrac{1}{15}\right|-28+\dfrac{1}{15}\)
\(=\left|\dfrac{1}{15}-28\right|-28+\dfrac{1}{15}\)
\(=28-\dfrac{1}{15}-28+\dfrac{1}{15}\)
\(=0\)
\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=0\)