Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \({\cos ^2}\frac{\pi }{8} + {\cos ^2}\frac{{3\pi }}{8} = {\cos ^2}\frac{\pi }{8} + {\cos ^2}\left( {\frac{\pi }{2} - \frac{\pi }{8}} \right) = {\cos ^2}\frac{\pi }{8} + {\sin ^2}\frac{\pi }{8} = 1\)
b)
\(\begin{array}{l}\tan {1^ \circ }.\tan {2^ \circ }.\tan {45^ \circ }.\tan {88^ \circ }.\tan {89^ \circ }\\ = (\tan {1^ \circ }.\tan {89^ \circ }).(\tan {2^ \circ }.\tan {88^ \circ }).\tan {45^ \circ }\\ = (\tan {1^ \circ }.\cot {1^ \circ }).(\tan {2^ \circ }.\cot {2^ \circ }).\tan {45^ \circ }\\ = 1\end{array}\)
Ta có:
\(\begin{array}{l}\sin \frac{\pi }{{24}}\cos \frac{{5\pi }}{{24}} = \frac{1}{2}\left[ {\sin \left( {\frac{\pi }{{24}} + \frac{{5\pi }}{{24}}} \right) + \sin \left( {\frac{\pi }{{24}} - \frac{{5\pi }}{{24}}} \right)} \right]\\ = \frac{1}{2}\left[ {\sin \left( {\frac{\pi }{4}} \right) + \sin \left( { - \frac{\pi }{6}} \right)} \right]\\ = \frac{1}{2}\left[ {\frac{{\sqrt 2 }}{2} - \frac{1}{2}} \right] = \frac{{\sqrt 2 - 1}}{4}\end{array}\)
Ta có:
\(\begin{array}{l}\sin \frac{{7\pi }}{8}\sin \frac{{5\pi }}{8} = \frac{1}{2}\left[ {\cos \left( {\frac{{7\pi }}{8} - \frac{{5\pi }}{8}} \right) - \cos \left( {\frac{{7\pi }}{8} + \frac{{5\pi }}{8}} \right)} \right]\\ = \frac{1}{2}\left[ {\cos \left( {\frac{\pi }{4}} \right) - \cos \left( {\frac{{3\pi }}{2}} \right)} \right]\\ = \frac{1}{2}.\left( {\frac{{\sqrt 2 }}{2} + 0} \right) = \frac{{\sqrt 2 }}{4}\end{array}\)
c/ ĐKXĐ: \(cosx\ne0\)
\(\Leftrightarrow tan^3x+1+tan^2x+4\sqrt{3}\left(1+tanx\right)=8+7tanx\)
\(\Leftrightarrow tan^2x\left(1+tanx\right)+\left(4\sqrt{3}-7\right)\left(1+tanx\right)=0\)
\(\Leftrightarrow\left(tan^2x-7+4\sqrt{3}\right)\left(1+tanx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tan^2x=7-4\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=2-\sqrt{3}\\tanx=-2+\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tanx=tan\left(-\frac{\pi}{4}\right)\\tanx=tan\left(\frac{\pi}{12}\right)\\tanx=tan\left(-\frac{\pi}{12}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{12}+k\pi\\x=-\frac{\pi}{12}+k\pi\end{matrix}\right.\)
Bạn tự tìm x thuộc khoảng đã cho
b/
ĐKXĐ: \(cos2x\ne0\)
\(\Leftrightarrow tan^22x+1+tan^22x=7\)
\(\Leftrightarrow tan^22x=3\)
\(\Rightarrow\left[{}\begin{matrix}tan2x=\sqrt{3}\\tan2x=-\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tan2x=tan60^0\\tan2x=tan\left(-60^0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=60^0+k180^0\\2x=-60^0+k180^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=30^0+k180^0\\x=-30^0+k180^0\end{matrix}\right.\)
Bạn tự tìm nghiệm thuộc khoảng đã cho nhé
Ta có : \({\sin ^2}\frac{\pi }{8} = \frac{{1 - \cos \frac{\pi }{4}}}{2} = \frac{{2 - \sqrt 2 }}{4}\)
Mà \(\sin \frac{\pi }{8} > 0\) nên \(\sin \frac{\pi }{8} = \frac{{\sqrt {2 - \sqrt 2 } }}{2}\)
Ta có : \({\cos ^2}\frac{\pi }{8} = \frac{{1 + \cos \frac{\pi }{4}}}{2} = \frac{{2 + \sqrt 2 }}{4}\)
Mà \(\cos \frac{\pi }{8} > 0\) nên \(\cos \frac{\pi }{8} = \frac{{\sqrt {2 + \sqrt 2 } }}{2}\)
a) Vì \(\frac{\pi }{2} < a < \pi \) nên \(\cos a < 0\)
Ta có: \({\sin ^2}a + {\cos ^2}a = 1\)
\(\Leftrightarrow \frac{1}{9} + {\cos ^2}a = 1\)
\(\Leftrightarrow {\cos ^2}a = 1 - \frac{1}{9}= \frac{8}{9}\)
\(\Leftrightarrow \cos a =\pm\sqrt { \frac{8}{9}} = \pm \frac{{2\sqrt 2 }}{3}\)
Vì \(\cos a < 0\) nên \(cos a =-\frac{{2\sqrt 2 }}{3}\)
Suy ra \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{{\frac{1}{3}}}{{ - \frac{{2\sqrt 2 }}{3}}} = - \frac{{\sqrt 2 }}{4}\)
Ta có: \(\sin 2a = 2\sin a\cos a = 2.\frac{1}{3}.\left( { - \frac{{2\sqrt 2 }}{3}} \right) = - \frac{{4\sqrt 2 }}{9}\)
\(\cos 2a = 1 - 2{\sin ^2}a = 1 - \frac{2}{9} = \frac{7}{9}\)
\(\tan 2a = \frac{{2\tan a}}{{1 - {{\tan }^2}a}} = \frac{{2.\left( { - \frac{{\sqrt 2 }}{4}} \right)}}{{1 - {{\left( { - \frac{{\sqrt 2 }}{4}} \right)}^2}}} = - \frac{{4\sqrt 2 }}{7}\)
b) Vì \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\) nên \(\sin a > 0,\cos a < 0\)
\({\left( {\sin a + \cos a} \right)^2} = {\sin ^2}a + {\cos ^2}a + 2\sin a\cos a = 1 + 2\sin a\cos a = \frac{1}{4}\)
Suy ra \(\sin 2a = 2\sin a\cos a = \frac{1}{4} - 1 = - \frac{3}{4}\)
Ta có: \({\sin ^2}a + {\cos ^2}a = 1\;\)
\( \Leftrightarrow \left( {\frac{1}{2} - {\cos }a} \right)^2 + {\cos ^2}a - 1 = 0\)
\( \Leftrightarrow \frac{1}{4} - \cos a + {\cos ^2}a + {\cos ^2}a - 1 = 0\)
\( \Leftrightarrow 2{\cos ^2}a - \cos a - \frac{3}{4} = 0\)
\( \Rightarrow \cos a = \frac{{1 - \sqrt 7 }}{4}\) (Vì \(\cos a < 0)\)
\(\cos 2a = 2{\cos ^2}a - 1 = 2.{\left( {\frac{{1 - \sqrt 7 }}{4}} \right)^2} - 1 = - \frac{{\sqrt 7 }}{4}\)
\(\tan 2a = \frac{{\sin 2a}}{{\cos 2a}} = \frac{{ - \frac{3}{4}}}{{ - \frac{{\sqrt 7 }}{4}}} = \frac{{3\sqrt 7 }}{7}\)
Câu 2 bạn coi lại đề
3.
\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)
\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)
\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)
\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
4.
Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm
5.
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)
\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)
\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)
\(\Leftrightarrow2sin^3x-sinx-1=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)
\(\Leftrightarrow...\)
a) Vì \(\frac{\pi }{2} < a < \pi \) nên \(\cos a < 0\). Do đó \(\cos a = \sqrt {1 - {{\sin }^2}a} = \sqrt {1 - \frac{1}{3}} = - \frac{{\sqrt 6 }}{3}\)
Ta có: \(\cos \left( {a + \frac{\pi }{6}} \right) = \cos a\cos \frac{\pi }{6} - \sin a\sin \frac{\pi }{6} = - \frac{{\sqrt 6 }}{3}.\frac{{\sqrt 3 }}{2} - \frac{1}{{\sqrt 3 }}.\frac{1}{2} = - \frac{{\sqrt 3 + 3\sqrt 2 }}{6}\)
b) Vì \(\pi < a < \frac{{3\pi }}{2}\) nên \(\sin a < 0\). Do đó \(\sin a = \sqrt {1 - {{\cos }^2}a} = \sqrt {1 - \frac{1}{9}} = - \frac{{2\sqrt 2 }}{3}\)
Suy ra \(\tan a\; = \frac{{\sin a}}{{\cos a}} = \frac{{ - \frac{{2\sqrt 2 }}{3}}}{{ - \frac{1}{3}}} = 2\sqrt 2 \)
Ta có: \(\tan \left( {a - \frac{\pi }{4}} \right) = \frac{{\tan a - \tan \frac{\pi }{4}}}{{1 + \tan a\tan \frac{\pi }{4}}} = \frac{{\frac{{\sin a}}{{\cos a}} - 1}}{{1 + \frac{{\sin a}}{{\cos a}}}} = \frac{{2\sqrt 2 - 1}}{{1 + 2\sqrt 2 }} = \frac{{9 - 4\sqrt 2 }}{7}\)
Ta có:
\({\cos ^2}a + {\sin ^2}a = 1 \Rightarrow \sin a = \pm \frac{4}{5}\)
Do \(0 < a < \frac{\pi }{2} \Leftrightarrow \sin a = \frac{4}{5}\)
\(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{4}{3}\)
Ta có;
\(\begin{array}{l}\sin \left( {a + \frac{\pi }{6}} \right) = \sin a.\cos \frac{\pi }{6} + \cos a.\sin \frac{\pi }{6} = \frac{4}{5}.\frac{{\sqrt 3 }}{2} + \frac{3}{5}.\frac{1}{2} = \frac{{3 + 4\sqrt 3 }}{{10}}\\\cos \left( {a - \frac{\pi }{3}} \right) = \cos a.\cos \frac{\pi }{3} + \sin a.\sin \frac{\pi }{3} = \frac{3}{5}.\frac{1}{2} + \frac{4}{5}.\frac{{\sqrt 3 }}{2} = \frac{{3 + 4\sqrt 3 }}{{10}}\\\tan \left( {a + \frac{\pi }{4}} \right) = \frac{{\tan a + \tan \frac{\pi }{4}}}{{1 - \tan a.tan\frac{\pi }{4}}} = \frac{{\frac{4}{3} + 1}}{{1 - \frac{4}{3}}} = - 7\end{array}\)
Ta có:
\(\begin{array}{l}cos\left( {\frac{\pi }{4}} \right) = cos\left( {2.\frac{\pi }{8}} \right) = 2co{s^2}\frac{\pi }{8} - 1 = \frac{{\sqrt 2 }}{2}\\ \Rightarrow co{s^2}\frac{\pi }{8} = \frac{{\sqrt 2 + 2}}{4}\end{array}\)
\( \Rightarrow cos\frac{\pi }{8} = \sqrt {\frac{{\sqrt 2 + 2}}{4}} = \frac{{\sqrt {\sqrt 2 + 2} }}{2}\) (vì \(0 < \frac{\pi }{8} < \frac{\pi }{2}\))
Ta có:
\(\tan \left( {\frac{\pi }{4}} \right) = \tan \left( {2.\frac{\pi }{8}} \right) = \frac{{2\tan \frac{\pi }{8}}}{{1 - {{\tan }^2}\frac{\pi }{8}}} = 1\)
\(\begin{array}{l} \Leftrightarrow 1 - {\tan ^2}\frac{\pi }{8} = 2\tan \frac{\pi }{8}\\ \Leftrightarrow {\tan ^2}\frac{\pi }{8} + 2\tan \frac{\pi }{8} - 1 = 0\end{array}\)
\( \Leftrightarrow \tan \frac{\pi }{8} = - 1 + \sqrt 2 \)(vì \(0 < \frac{\pi }{8} < \frac{\pi }{2}\))